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Why Nuclear Reactions?
Nuclear reactions in general are used to: 

1. Produce other nuclei: 
samples, sources, new elements, isotopes for applications,  
(radioactive ion / rare isotope / exotic) beams  
              choose your favorite expression
2. Study some properties of a nucleus of choice
 in a reaction experiment for:  
nuclear structure, astrophysics, reaction mechanisms, 
stockpile stewardship,…

3. Study nuclear dynamics and nuclear matter  
equation of state
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Outline of these lectures
- few basics of reaction experiments 
 
- different reaction types 
 
- production of exotic beams for reaction experiments 
 
- some experimental considerations 
 
- examples reaction experiments with exotic beams
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Some basic notations

A reaction: A+B→C+D   or   B(A,D)C

projectile/beam target

fragment/recoil residual/ejectile

A B

C

D

Normal kinematics: a+B→C+d; B(a,d)C, Mprojectile < Mtarget   
Inverse kinematics: B+a→d+C; a(B,C)d, Mprojectile > Mtarget
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Conservation laws
Things that are considered conserved in nuclear reactions:

Energy 

Linear momentum 

Proton and neutron (baryon) number

Charge  

Angular momentum 

Parity 

Isospin
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Reaction Q-value

Q = ∑
i

MEi − (∑
f

MEf + E*f ) = (Mbeam + Mtarget)c2 − ∑
products

(Mproductc2 + Eexcitation,product)

Reaction Q- value: amount of energy released in the reaction

Most convenient to use mass excesses (ME) or binding energies (BE). 
Evaluated values available e.g. through https://www-nds.iaea.org/amdc/ 
(various vintages of these evaluations are found through out codes, be careful
if working on something very recent and code uses something older!)

Q < 0: endothermic reaction, requires energy input to make it work 
Q > 0: exothermic reaction, energy is released, can occur if otherwise possible

Important to consider when choosing what reaction to use! 
(reaction energy threshold, momentum matching, 

which states to populate, kinematics…)

https://www-nds.iaea.org/amdc/
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A. Wuosmaa

Few important parameters for reactions

 

θ

b

rmin

R

θ(b) = π − 2b∫
∞

rmin

dr
1

r2 1 − (b/r)2 − Vtot(r)/E

Classical deflection equation:

Vc(MeV ) ≈ 1.44
ZbeamZtarget

1.2(A1/3
beam + A1/3

target)

Impact parameter b Coulomb barrier height

For experiment we can only choose:
Target, Beam, Energy, and Polarization

Vtot(r) = Vc(r) + Vnuc(r), E = mv2/2

L = ⃗r × ⃗p = rpsinϕ = bp

ΔL = qb = (pf − pi)b ≈ qR on surface
L conserved for fixed b
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Types of Nuclear Reactions
• Elastic scattering: A+B→A+B 

(no energy exchange)
• Inelastic scattering: A+B→A+B*  

(energy exchange, no mass or charge exchange)
• Transfer of one or more nucleons x: (A=C+x)+B→C+(D=B+x) 

(mass and/or charge exchange)
• Breakup/knockout: A+B→B+C+D  

(projectile breaks due to interaction with the target)
• Compound nuclear reaction: A+B→C*→D+E 

(formation of a short lived intermediate nucleus)
• Radiative capture: A+B→C+𝛄 

(projectile captured by target, de-excitation via photon)
• Photo-disintegration: C+𝛄→A+B 

(inverse of radiative capture)
• Fission: A + B→C+D+ x neutrons 

(A typically neutron; B e.g. U, Pu; C,D heavy fragments)
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Nuclear Reaction Timescale

Image credit: R.J. Blin-Stoyle, Nuclear and particle physics

10−20…10−14s
10−22s

Higher impact parameter
Peripheral Central
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Reaction Types: Impact Parameter vs Energy

A. Obertelli / Euroschool on Exotic Beams 2016
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What do we measure in a reaction experiment?
Our instruments measure Energy and Time  

of the beam components, reaction products, 𝛄/X-rays,…
→ Particle identification (PID) of beam/products (dE/dx, ToF,…), 

Energy levels of the states involved,… 
 

We know the positions and coverage of our instruments 
relative to the beam and the target 
→ Kinematics, angular distributions,… 

 
We count the amount of these interactions with known efficiencies

→ Probabilities of the reactions, cross sections, branching ratios,… 

One can polarize the beam or the target
→ Spin orientation, spin dependence of reaction cross section

See Tony Ahn’s lectures for the techniques how
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Cross sections

dσ
dΩ

“Just for fun, some have referred to the microbarn as an outhouse,  
but you’ll probably never find that in a peer-reviewed publication.” 
S. Goldfarb & K. Anthony, Nature Physics 15, 414 (2019). Who can get       into LaTeX?!

Most reaction experiments measure a cross section in some form  
(probability of a reaction taking place) e.g. some of these

d2σ
dEdΩ

dσ
dE

σ(θ)σ σ(E)

Shape and angular distribution of cross section:  
→ information about reaction mechanism (theory!)
→ properties of residual nuclei: size, shape, spins and parities of levels,… 
 
Energy dependence: 
→ information about reaction mechanism (theory!)
→ identify resonances 
 
Unit is “barn”: 1 barn = 10-24 cm2, millibarn = 10-27 cm2 very common

Integrated cross sections Differential cross sections
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Differential cross section: Experiment meets Theory

( dσ
dΩ )

exp
= C2S ( dσ

dΩ )
theory

This we can measure  
at given angle and incident energy

This has the nuclear structure: 
 
C2: a statistical factor (Glebsch-Gordan coef.), 
omitted in some texts
 
S: spectroscopic factor

This has the reaction model
from your favorite /most applicable  

theoretical description

Most common unit: mbarn/sr = 10-27 cm2/sr k    /sr?
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How to measure: Differential cross section

Target

Beam

Unreacted beam

Detector / spectrometer

dΩ =
A
d2

=
det . area
distance2

[sr]
ϵ (θ, ϕ)A

d

( dσ
dΩ )

exp
=

NDetected(θ, ϕ)
NBeam ⋅ NTarget ⋅ ϵ ⋅ dΩ

Integrated counts from  
detector / spectrometer

Integrated beam particles
Non-overlapping target atoms in target per unit area [1/cm2] 

(careful with composite targets!) 

Detector / spectrometer efficiency  [unitless] 
& solid angle / acceptance [sr]
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About exotic beam reaction kinematics
Traditionally reaction experiments done with  
light projectile on heavier stable target — “normal kinematics” 
 
Most of the exotic beam reaction experiments done with  
a projectile on typically much lighter target — “inverse kinematics” 
 
→ Energy - angle systematics are quite different  
and need to be careful in coordinate transformations  
between the laboratory and center of mass frames

Good reads on topic, e.g. : 
W. Catford, LNP879, 67 (2014), 
J.S. Winfield et al., NIM A 396, 147 (1997)

( dσ
dΩ )

lab
=

1 + γ2 + 2γcosθcms

|1 + γcosθcms |
⋅ ( dσ

dΩ )
cms

, γ = vcms /vejectile

W. Catford, LNP879, 67 (2014)
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Reaction Kinematics: Useful Tools for Experimentalist

• LISE++ program by O. Tarasov et al. 
(includes a relativistic kinematics calculator) 
http://lise.nscl.msu.edu/lise.html 
O.Tarasov, D.Bazin, NIM B 266, 4657 (2008). 
D.Bazin, O.Tarasov, M.Lewitowicz, O.Sorlin, NIM A 482 307 (2002). 

• CATKIN by W. Catford  
(Relativistic 2 body kinematics in Excel): 
http://personal.ph.surrey.ac.uk/~phs1wc/kinematics/ 

• Two-Body Kinematics Calculator and Plotter by S. Sjue: 
http://skisickness.com/2010/04/relativistic-kinematics-calculator/ 

• NPTOOL by A. Matta et al. (GEANT4/ROOT simulation / analysis 
framework, has e.g. kinematics plotting in ROOT command line) 
http://nptool.org/ 
A. Matta et al., J. Phys. G 43, 045113 (2016).

http://lise.nscl.msu.edu/lise.html
http://personal.ph.surrey.ac.uk/~phs1wc/kinematics/
http://skisickness.com/2010/04/relativistic-kinematics-calculator/
http://nptool.org/
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Example: E3 vs θ3cm line for d(28Si,p)29Si @10MeV/u

root [0] NPL::Reaction r("28Si(d,p)29Si@280")
root [1] r.GetKinematicLine3()->Draw("ac")

LISE++

NPTOOL

Two-Body Kinematics (webpage)

Be careful with how different programs expect inputs to get consistent results!
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Some experimental considerations

• Production of Exotic Beams

• Intensity needs for Reaction Experiments

• Systematic uncertainties
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Units of beam intensities
Typical notation for intensity (or flux) of exotic beams: 
particles per second, pps, 1/s, Hz, AX/s

Primary beams are measured as electric current, A (C/s), 
typically nA, μA, mA (better to use enA, eμA, emA)

Often also “particle current”, expressed in “particle A” 
pnA, pμA  (take out the beam charge state)

Iparticle =
Ielectric

charge state
q: beam charge state,  
e = elementary charge = 1.602·10-19 CIntensity =

Ielectric

beam charge
=

I
q ⋅ e

, [ C/s
C

=
1
s ]

→Integrated current (total charge) gives total amount of incident particles



A. SaastamoinenEBSS2019 / Oak Ridge TN                                   June 27, 2019

Most common production reactions
Isotope Separation On-Line (ISOL):
High energy, high power 
p/e-/𝛄 beam 
on heavy target
 
In-flight:
High energy, high power 
heavy ion beam 
on typically a Be target

High energy: ~100 MeV…1 GeV/u  
High power: up to MWatts! 
(1 MeV * 1 μA = 1W)

At lower energies (both ISOL and in-flight):   
Fusion evaporation, few nucleon transfer, deep-inelastic / multi-nucleon transfer
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Production of Exotic Beams
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Main features of ISOL and in-flight
Isotope Separation On-Line:  
- thick target, thin target+ solid catcher → slow release of products (up to seconds),  
  chemically selective, need to ionize products 
- thin target or source + gas catcher → faster ∝ 0.1…10 ms, products extracted  
  typically as 1+ ion/molecule, chemically nonselective, but less efficient than thick catcher 
- mass separator, charge state booster before reacceleration  
  → typically beam with little to none impurities
- most common post-accelerator is tandem / linac  
  → present facilities have availability of few MeV/u, soon up to ~10 MeV/u  
  → good quality beam after post-acceleration

In-flight:  
- products emerge from target with similar energy as the primary beam (up to GeV/u) 
  → fast, depends on separator/spectrometer flight time, typical few μs 
- chemically nonselective (can produce whatever reaction allows)
- efficient (products very forward focused towards the separator) 
- secondary beam has typically considerable amount of impurities,  
  energy/momentum spread, emittance  
- tradeoffs between secondary beam energy, intensity, quality (can’t have it all!)
  → for better beam quality need gas catcher, charge state booster, 
       post-accelerator: energies available few MeV/u, soon up to ~10 MeV/u
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Exotic Beam Intensity

σ : production cross section [cm2] 
F : primary-beam intensity [1/s] 
N:  number production target nuclei [1/cm2] 
ε1: product release and transfer efficiency  
ε2: ion-source efficiency 
ε3: efficiency due to radioactive decay losses 
ε4: fragment separator efficiency 
ε5: gas cell efficiency 
ε6: mass separator efficiency 
ε7: post-acceleration efficiency

I = σ ⋅ F ⋅ N ⋅ ϵ1 ⋅ ϵ2 ⋅ ϵ3 ⋅ ϵ4 ⋅ ϵ5 ⋅ ϵ6 ⋅ ϵ7

Intensity of an Exotic Beam delivered to an experiment:
[1/s, pps]

ISOL production part: ε1-ε3  
Fragment separator: ε4  
Reaccelerated beams: ε5-ε7
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Exotic beam intensity requirement for an experiment?

( dσ
dΩ )

exp
=

NDetected(θ, ϕ)
NBeam ⋅ NTarget ⋅ ϵ ⋅ dΩ

I = σ ⋅ F ⋅ N ⋅ ϵ1 ⋅ ϵ2 ⋅ ϵ3 ⋅ ϵ4 ⋅ ϵ5 ⋅ ϵ6 ⋅ ϵ7

Ntarget = δ ⋅
NA

M
= d ⋅ ρ ⋅

NA

M
δ: mass/unit area [g/cm2], d: thickness [cm],  
ρ: density [g/cm3], M: molar mass [g/mol], 
NA: Avogadro’s number [1/mol]

How many counts per angle and how many incident energies are needed?

Nbeam = ∫beamtime
Idt;

ε: detection efficiency — needs to be optimized
dΩ: solid angle — maximize coverage

How thick target can be used?
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Exotic Beam Physics Reach 

P. Butler
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Intensity requirements for reaction experiments

Improved instruments and 
experimental techniques
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Example: Requirements for transfers in inverse kinematics
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Where do you want to do your experiment?

TRIUMF NSCL(FRIB)

ND
RIBF

RCNPTAMU

ANL

FSU

GSI(FAIR)
FLNR

GANIL  
SPIRAL1(2)

ISOLDE
EXCYT

EXOTIC  
(SPES)

(RAON)

ISOL or similar + re-acceleration In-flight (Under construction)

RIBRAS

Note: Included only facilities with (radioactive/rare isotope/exotic) beams for reaction experiments. Some facilities may have 
more than one way to make beams!  There are a lot of other existing facilities with stable beams or very low-energy (keV) 
exotic beams.    

HIRFL

ANU

Facilities providing exotic beam for reactions

CIAE
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Reaction Experiment Uncertainties
Statistical uncertainties: 
Mostly just how many counts one can get! 
For Poisson statistics:   
(assuming counting time separated independent events)  
 
Systematic uncertainties: 
Beam related:

• Energy/momentum spread
• Angular spread
• Time spread

Target related:
• Target thickness, uniformity
• Target composition
• Target orientation

Detector related:
• Detector distance
• Detector orientation
• Detector efficiency

… and much much more, all specific for a given experiment!

∝ N

Beam characterization, 
tracking, …

Target characterization, 
background measurements, 

alignment, …

Understanding the instruments, 
simulations, alignment, …

See e.g. IEEE Trans. Nucl. Sci. 43, 2501 (1996) 
uncertainty of Gaussian  peak centroid: 

var(x0) =
σ2

A
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Example: Target thickness / uniformity

101-102 μg/cm2

102 mg/cm2
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Example: Setup alignment

Transit: < 0.1 mm over  
few tens of m (on single axis)

Reconstruction from images with markers:
< 1 mm precision throughout experimental hall

In not so distant future: 
Reconstruct setup in 3D  
with < 1 mm precision  
from photos taken 
with an app?
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Example: Detector orientation

Know thy instruments!
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Summary lecture 1

- few basics of reaction experiments 
 
- different reaction types 
 
- production of exotic beams and intensity
  requirements for reaction experiments 
 
- some experimental considerations

Lecture 2: Examples of reaction experiments 
with different approaches


