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Figure 1.6: Schematic representation of the s- and r-process on a section of the
chart of nuclides. The s-process (red) proceeds along the valley of stability and the
r-process (blue) along the neutron drip line. At the closed neutron shell N = 50, the
neutron capture cross section drops by several orders of magnitude, which leads to
a pile up of material there that produces the double-peak features seen in ??.

Figure 1.7: Contributions of the s-process (solid line), r-process (dots), and p-
process (squares) to the solar abundances. Note that the r-process produces peaks
at slightly lower masses than the s-process. Figure 1 from arnould:07, see that
reference for details. © 2007 Elsevier B.V.
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Produce elements beyond iron by series of neutron captures followed by beta-decays:
from J. Lippuner
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chart of nuclides. The s-process (red) proceeds along the valley of stability and the
r-process (blue) along the neutron drip line. At the closed neutron shell N = 50, the
neutron capture cross section drops by several orders of magnitude, which leads to
a pile up of material there that produces the double-peak features seen in ??.

Figure 1.7: Contributions of the s-process (solid line), r-process (dots), and p-
process (squares) to the solar abundances. Note that the r-process produces peaks
at slightly lower masses than the s-process. Figure 1 from arnould:07, see that
reference for details. © 2007 Elsevier B.V.
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(there is also evidence for a possible i-process)
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Capturing Neutronss-process vs. r-process

s-process r-process

mechanism neutron capture, β− decay No Coulomb barrier!

τn 102 − 105 yr ≪ τβ−

τβ− ≪ τn 0.01 − 10 s

site inside massive stars
supernovae?

NS-NS/BH mergers?

neutron source
13C + 4He → 16O+ n

22Ne + 4He → 25Mg+ n

neutrino driven wind

tidal ejecta of NS material

path valley of stability neutron drip line

peaks∗
A = 88, 138, 208

strontium, barium, lead

A = 80, 130, 194

selenium, xenon, platinum

∗ due to closed neutron shells at N = 50, 82, 126

47 Jonas Lippuner

from J. Lippuner

AGB Stars
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Figure 2
A portion of the nuclear chart showing elements Xe to Pr and the production of each isotope by the p-, s-, and r-processes. The
s-process (light blue line) operates close to stability—the black boxes show stable nuclei—whereas the r-process is formed out of very
neutron-rich (unstable) nuclei that β decay back ( green lines) to stability. We also add one isotope of Nd to this chart to indicate the next
steps in the s-process chain, but do not indicate the other Nd isotopes. Listed to the outside right are the total percentage breakdowns
by process for each element.

additional “weak” component (coming from He core fusion in massive stars) is needed to account
for s-nuclei with A ≤ 88, and a “strong” component is suggested to account for roughly 50% of
Solar 208Pb (Clayton & Rassbach 1967, Käppeler et al. 1982).

The general rules for the s-process describe well situations where τn is very different than τβ . But
an unstable nuclide with τn ∼ τβ along the s-path suffers partly from both n-capture and β decay.
There are important “branching points” along the s-path that depend on neutron density and/or
temperature, by increased β-decay rates as a result of increased thermal populations of low-lying
nuclear states, or by the pulsed nature of the s-process in asymptotic giant branch (AGB) stars (e.g.,
Käppeler et al. 1990). An example is 141Ce, which at high neutron density becomes a branching
point in the s path, partly feeding 142Ce via the neutron capture channel and partly 141Pr via the
β-decay channel. The effect of this branching is also to partly bypass the s-only 142Nd. Continued
pursuit of accurate experimental cross sections are essential steps in producing the most realistic
s-process yields from AGB models stars.

On the neutron-rich side, there are stable isotopes that cannot be fed by the s-process because
they are preceded by an unstable isotope of short half-life. In Figure 2 these isotopes are 134Xe
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From Sneden et al. 2008



Neutron-capture processes

heavy elements are 
made by 

slow (τβ/τn<1) 
and

fast (τβ/τn>1)

• Sequences of (n,g) reactions and β—decays

• Closed neutron-shells give rise to the peaks at 
Te,Xe / Ba and at Os,Pt,Au / Pb

β n

neutron-capture events

The s-process
• Secondary process, requires pre-existing 

seed nuclei to capture neutrons on  


• Neutrons slowly produced by reactions 
in both AGB stars and during He and C 
burning in massive stars 


• Flow is mainly sensitive to neutron 
capture cross sections 


• With accurate cross sections, can 
determine the s-process contribution to 
the solar abundances  

s-process vs. r-process

s-process r-process

mechanism neutron capture, β− decay No Coulomb barrier!

τn 102 − 105 yr ≪ τβ−

τβ− ≪ τn 0.01 − 10 s

site inside massive stars
supernovae?

NS-NS/BH mergers?

neutron source
13C + 4He → 16O+ n

22Ne + 4He → 25Mg+ n

neutrino driven wind

tidal ejecta of NS material

path valley of stability neutron drip line

peaks∗
A = 88, 138, 208

strontium, barium, lead

A = 80, 130, 194

selenium, xenon, platinum

∗ due to closed neutron shells at N = 50, 82, 126

47 Jonas Lippuner
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2. HEAVY ELEMENT FORMATION
Stellar fusion of elements heavier than iron is endothermic: It requires energy. Also, Coulomb
barriers for charged-particle reactions increase at heavy proton number. As a result, the nuclei
beyond the Fe group are generally not formed in charged-particle fusion but instead are created
in n-capture processes; there are no Coulomb barriers. Neutrons are captured onto nuclei that
can then β decay if they are unstable, transforming neutrons into protons. In this manner, element
production progresses through the heaviest elements of the Periodic Table. This process is defined
as slow (rapid) if the timescale for neutron capture, τ n, is slower (faster) than the radioactive decay
timescale, for unstable nuclei. Generally we refer to these as the s-process or the r-process.

The r-process and s-process were initially described and defined in 1957 by Burbidge et al.
(1957) and Cameron (1957a,b). The s-process (τn ≫ τβ ) is defined by virtue of the long times
(hundreds or thousands of years) between successive neutron captures on target nuclei. It thus
operates close to the so-called valley of β-stability, as illustrated in Figure 1 (Möller, Nix &
Kratz 1997, their figure 16). Consequently the properties (e.g., masses and half-lives) of the stable
and long-lived nuclei involved in the s-process can be obtained experimentally. As the s-process
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Figure 1
Chart of the nuclides showing proton number versus neutron number after Möller, Nix & Kratz (1997).
Black boxes indicate stable nuclei and define the so-called valley of β-stability. Vertical and horizontal lines
indicate closed proton or neutron shells. The magenta line indicates the so called r-process path, with the
magenta boxes indicating where there are final stable r-process isotopes. Color shading denotes the
timescales for β decay for nuclei and the jagged black line denotes the limits of experimentally determined
nuclear data at the time of their article.
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From Moeller et al. 2008

Solar r-process residuals
• Material builds up at neutron 

closed shells during neutron 
capture flow


• When neutrons are exhausted, 
material stays at the same mass 
number and decays back to 
stability


• Mass at which flow intersects 
closed shells is where peaks end 
up in the r-process distribution


• Different positions of peaks from 
s-process since intersection 
points are different, lower mass 
for r-process 



Solar r-process residuals 100 M. Arnould et al. / Physics Reports 450 (2007) 97–213
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Fig. 1. Decomposition of the solar abundances of heavy nuclides into s-process (solid line), r-process (dots) and p-process (squares) contributions.
The uncertainties on the abundances of some p-nuclides that come from a possible s-process contamination are represented by vertical bars (from
[2]). See Figs. 3–5 for the uncertainties on the s- and r-nuclide data.

value. A marginal agreement (within quite large uncertainties) is found for Cl and Au, while the results for Ga, Rb,
Ag, In and W are discordant. At least some of these discrepancies may be attributed to spectroscopic or atomic data
problems. The abundances of the noble gases Ar, Kr and Xe, as well as of some specific elements like Hg, have still to
rely on theoretical considerations.

The isotopic composition of the elements in the SoS is mostly based on the terrestrial data, except for H and the
noble gases [6], where some adjustments are also applied for Sr, Nd, Hf, Os, and Pb. The practice of using ter-
restrial isotopic data is justified by the fact that, in contrast to the elemental abundances, the isotopic patterns are
not affected to any significant level by geological processes. Only some minor mass-dependent fractionation may
operate. A notable exception to the high bulk isotopic homogeneity comes from the decay of relatively short-lived
radio-nuclides that existed in the early SoS and decayed in early-formed solids in the solar nebula. Also interplane-
tary dust particles contain isotopic signatures apparently caused by chemical processes. Additional isotopic ‘anoma-
lies’ are observed in some meteoritic inclusions or grains. Isotopic anomalies in the SoS are discussed further in
Section 2.4.

The SoS nuclidic abundance distribution exhibits a high ‘iron peak’ centred around 56Fe followed by a broad
peak in the mass number A ≈ 80–90 region, whereas double peaks show up at A = 130–138 and 195–208. These
peaks are superimposed on a curve decreasing rapidly with increasing A. It has been realised very early that these
peaks provide a clear demonstration that a tight correlation exists between SoS abundances and nuclear neutron shell
closures.

2.2. The s-, r- and p-nuclides in the solar system: generalities

It is very useful to split the abundance distribution of the nuclides heavier than iron into three separate distributions
giving the image of the SoS content of the p-, s- and r-nuclides. A rough representation of this splitting is displayed in
Fig. 1. In its details, the procedure of decomposition is not as obvious as it might be thought from the very definition of
the different types of nuclides, and is to some extent dependent on the models for the synthesis of the heavy nuclides.
These models predict in particular that the stable nuclides located on the neutron-rich/neutron-deficient side of the
valley of nuclear stability are produced, to a first good approximation, by the r-/p-process only. Fig. 2 provides a
schematic view of the flows resulting from the action of the nuclear transmutations making up the p- and r-processes.
The details of the flow patterns depend on the astrophysical models and on the adopted nuclear physics, as discussed in
Sections 4, 5, 7 and 8 for the r-process, and as reviewed by [2] for the p-process. In all cases it remains true, however,
that highly neutron-rich/deficient and !-unstable nuclides are involved in the r-/p-process and cascade to the stable
neutron-rich/deficient nuclides when the nuclear transformations end for one reason or another. These stable nuclides

1st peak
2nd peak

3rd peak
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Figure 11
(a) Comparisons of n-capture abundances in six r-process-rich Galactic halo stars with the Solar-system r-only abundance distribution.
The abundance data of all stars except CS 22892-052 have been vertically displaced downward for display purposes. The solid light
blue lines are the scaled r-only Solar-system elemental abundance curves (Simmerer et al. 2004, Cowan et al. 2006), normalized to the
Eu abundance of each star. (b) Difference plot showing the individual elemental abundance offsets; abundance differences are
normalized to zero at Eu (see Table 1 and Table 2) for each of the six stars with respect to the Solar-system r-process-only abundances.
Zero offset is indicated by the dashed horizontal line. Symbols for the stars are the same as in panel a. (c) Average stellar abundance
offsets. For individual stars all elemental abundances were first scaled to their Eu values, then averaged for all six stars, and finally
compared to the Solar-system r-only distribution.
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• Can also find low metallicity 
halo stars with significant 
enhancement of neutron capture 
nuclei


• In many stars, the pattern of 
second and third peak nuclei is 
very similar to the pattern of r-
process residuals, suggesting 
they only have r-process 
enrichment 


• There is more variation in the 
first peak r-process abundances 
among low metallicity halo stars 



r-process in the galaxy
• Also can find some low-metallicity 

halo stars that are enriched in 
neutron capture elements that 
have an abundance pattern that is 
significantly different than the solar 
r-process abundance pattern 


• Suggests there might need to be 
two r-process sites:


• main r-process (up to third peak)


• weak r-process (dominated by 
Sr, Y, Zr)

LEPP: Lighter Element Primary Process

• Observations of halo stars indicate two “r-
process” sites:
• Main r-process
• Stellar LEPP / weak r-process

25

Stars with high enrichment in 
heavy r-process abundances

Stars with low enrichment in 
heavy r-process abundances



r-process in the galaxy
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is still not clear that multiple sites are required for r-process nucleosynthesis or what the sites for
these various mass ranges of n-capture elements observed in the halo stars might be.

7. EARLY GALACTIC NUCLEOSYNTHESIS

7.1. Some Trends with Metallicity

Large-sample surveys of halo stars with large metallicity ranges are providing new clues about the
nature and extent of n-capture nucleosynthesis in the early Galaxy. Abundance signatures of these
elements can help to identify the parameters of the first stars—long since gone—and the sites for
r- and s-process nucleosynthesis (Cowan & Sneden 2006). There are many ways to approach this
issue. We begin in Figure 14 by contrasting the abundance behavior as a function of metallicity
of the α element Mg and the n-capture element Eu. Only large stellar samples are employed for
these correlations; the literature sources are listed in the figure caption.
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Figure 14
[Mg/Fe] and [Eu/Fe] abundances as a function of [Fe/H] metallicity for halo and disk stars. For this figure
the data have been taken only from large-sample surveys: Fulbright (2000); Reddy et al. (2003); Cayrel et al.
(2004); Cohen et al. (2004); Simmerer et al. (2004); Barklem et al. (2005, red points); Reddy, Lambert &
Allende Prieto (2006); François et al. (2007). In both panels the dotted lines represent the Solar abundance
ratios. In panel b, the solid red line is a least-square fit to the Eu data, and the two dashed black lines indicate
the approximate extent of the Eu/Fe data (similar to Cowan & Thielemann 2004).
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From Sneden et al. 2008

• r-process enhancement present 
at very low metallicity, similar to 
the beginning of enrichment of 
the ISM by supernovae 


• Suggests that r-process must be 
a primary process 


• Maybe an argument in favor of 
being associated with 
supernovae 



Galactic r-process budget

⇡ 0.025 and 0.1, respectively. In the following, we test the neutron star merger scenario for the
origin of (heavy) r-process elements. It is worth noting that numerical simulations of merger ejecta
show that heavy r-process elements are robustly synthesized (Goriely et al., 2011; Korobkin et al.,
2012; Perego et al., 2014; Wanajo et al., 2014; Eichler et al., 2015; Just et al., 2015; Wu et al.,
2016; Siegel & Metzger, 2017). The first peak elements are not necessarily synthesized and their
abundances depend on the ejection mechanism and on the nature of the remnant of mergers (e.g.
Wanajo et al. 2014; Lippuner & Roberts 2015; Wu et al. 2016; Lippuner et al. 2017) so that mergers
with di↵erent masses may produce di↵erent abundance patterns. Note that there are metal poor
stars in which the abundance ratio of Th to Eu is larger than that of the sun, the so-called “actinide
boost stars” (e.g. Hill et al. 2002; Roederer et al. 2009). The variation in elemental abundances
beyond the third r-process peak elements does not a↵ect the mass estimates but they suggest that
there are r-process events that produce larger amounts of very heavy elements.

2.1 Production rate inferred from r-process measurements

Astrophysical observations and geological measurements provide evidence that r-process elements
are produced in rare events in each one of those a significant amount of r-process elements (a few
percent of solar masses) are produced. These observations support the merger scenario. In this
section, we briefly summarize the observations and demonstrate their compatibility with each other
and with the merger scenario. The results are summarized in Figs. 2 and 3.
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Figure 2: The rate of r-process production events in the Milky Way and the mass produced per
event inferred from various measurements (see the text for details and also Hotokezaka et al. 2015).
Here, we assume r-process elements with the solar abundance pattern for A � 69 (including the first
peak r-process elements) are produced in each event. For GW170817, we take the rate estimated
with the 90% confidence interval (Abbott et al., 2017b) and the mass estimate of ⇡ 0.05M� with
an uncertainty of a factor of 2. To convert the volumetric event rate Gpc�3 yr�1 to the galactic
event rate, we use the number density of Milky-Way like galaxies of ⇡ 0.01Mpc�3.

(i) The total mass of r-process elements in the Milky Way: The total mass of r-process elements
in the Milky Way gives a rough estimate for the product of the event rate RMW and the average
mass produced by each event m

r

: Mtot, r ⇠ tMW · RMW · m
r

, where tMW ⇡ 10 Gyr is the age of
the Milky Way (e.g. Eichler et al. 1989; Bauswein et al. 2014; Hotokezaka et al. 2015; Rosswog

5

Supernova rate is up here 

from Hotokezaka et al. (2017)
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Initial Conditions for the r-
process 

• In most r-process scenarios, material starts at high 
density and high temperature 


• Therefore, nuclear statistical equilibrium (NSE) holds, 
where forward and reverse strong reactions are balanced  
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Initial Conditions for the r-
process
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and

Baryon number conservation and charge neutrality give:
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NSE Neutron Fractions

Lower Ye, higher s result in larger numbers of free neutrons in NSE



Neutron-to-Seed Ratio

The initial neutron-to-seed ratio is a useful metric for wether or not a 
complete r-process will occur



• In high-entropy material, seeds 
may not form during NSE


• Instead left with alpha particles 
and neutrons 


• Make seed nuclei via 

Initial Conditions for the r-
process

Initial Conditions for the r-
process

Nucleosynthesis is much more sensitive to the dynamics, but can make r-process nuclei 
for much higher Ye
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I. The impact of r-process nucleosynthesis 751

Figure 5. Illustration of the effect of radioactive heating on the density evolution (for run B, see Table 1; 1.3 and 1.4 M⊙). The labelling of the curves is as
in the previous figures. Inset zooms on the density evolutions for the period around t ∼ 1 s, when heating has maximal impact on the density, decreasing it by
about one order of magnitude.

for much longer. In fact, it is entirely plausible that the low-mass end
of the neutron star binary population could produce a very massive
neutron star as final product rather than a black hole. The wind would
then have a substantially longer duration, comparable to the Kelvin–
Helmholtz time-scale of many seconds. For such cases, however, it
remains an open question whether/how baryonic pollution could be
avoided and a (short) GRB could be launched. Secondly, neutron
stars are endowed by possibly strong initial magnetic fields and
the dynamics during a merger offers ample opportunities to amplify
these initial seeds (Price & Rosswog 2006; Liu et al. 2008; Anderson
et al. 2008; Rezzolla et al. 2011; Giacomazzo, Rezzolla & Baiotti
2011; Zrake & MacFadyen 2013) to substantial fractions of the
equipartition strength. A merger remnant rotating at ∼1 ms with a
strong magnetic field (∼1016 G) could easily increase the amount
of launched mass by orders of magnitude (Thompson 2003). For
these reasons, we parametrize the mass in these winds in a range
from 10−4 to 10−2 M⊙.

In the following we apply a very simple wind model. It is meant
to illustrate basic features of the nucleosynthesis and to discuss the
plausibility of a second radioactively powered transient beside the
usual ‘macronovae’ from the dynamic ejecta (see Paper II). This
topic deserves more work beyond our simple model, ideally with
multi-dimensional neutrino-hydrodynamic simulations.

In our simple approach we calculate the bulk properties of ν-
driven winds by means of the estimates from Qian & Woosley

(1996). The asymptotic value of the wind electron fraction can be
estimated as

Y fin,wind
e ≈

(
1 + Lν̄e

Lνe

ϵν̄e − 2# + 1.2#2/ϵν̄e

ϵνe + 2# + 1.2#2/ϵνe

)−1

, (5)

where Lνe /Lν̄e are the luminosities of electron neutrinos and anti-
neutrinos, ϵ = ⟨E2⟩/⟨E⟩, E being the neutrino energy, and # the
neutron–proton mass energy difference of 1.293 MeV. To estimate
ϵ we simply multiply our values for ⟨E⟩ by a factor of 1.3, as
appropriate for Maxwell–Boltzmann distributions. If the neutrino
properties from the simulations are inserted (see Table 1), one finds
values between Y fin,wind

e = 0.28 and 0.40. Interestingly, the asymp-
totic electron fraction increases with decreasing mass ratio, so that
the symmetric system produces the lowest Ye values. Again based
on Qian et al. (1996), we find that the average entropies in the wind
are very close to 8 kB per baryon for all our cases.

In our simple model, we produce a synthetic trajectory with a
linear expansion profile ρ(t) = ρ0(1 + vt/R0)−3, starting from the
entropy s0 = 8 kB/baryon and a range of electron fractions, cor-
responding to the runs A–D. Based on the results of Dessart et al.
(2009), their fig. 2, we select the initial density ρ0 = 5 × 107 g cm−3

and the characteristic radius R0 = 200 km in a way that temperature
is safely above the NSE threshold. We then run the nucleosynthesis
network, using the calculated values of ρ(t) and self-consistently
incrementing the entropy in the same way as described above for
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Calculating the r-process

from Rosswog et al. (2014)

• Time dependent 
thermodynamic conditions 
from simulations (if post-
processing)


• By the time r-process 
starts, homologous 
expansion has set in with:
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Calculating the r-process
• Large, coupled system of stiff 

ODEs 

• Need to employ implicit methods 

• Input nuclear data:

• masses 

• partition functions 

• beta-decay rates 

• neutron capture rates 

• fission rates

• …


• Initial composition

Rate Equations:
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play a role. Therefore, weak interaction rates have a dependence �
↵,weak = �

↵,weak(T, n
B

, Y
e

, f{⌫}) where f{⌫} are the
externally specified neutrino distribution functions of the relevant neutrino species (see Appendix C). Although, weak
decay rates of nuclei are just constants when final state blocking by leptons can be safely ignored.

For two particle reactions, it is common to define the cross-section as (Peskin & Schroeder 1995, §4)
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where vrel is the relative velocity between particles [1] and [2]. Adopting the viewpoint that the [i]’s are stationary
targets and the [j]’s are incoming projectiles impinging on the targets, the cross section �

↵

can be interpreted as (e.g.,
Clayton 1968, §4)
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where N

↵

is the double counting factor from Equation (6). Since the distribution functions are normalized by the
densities of species [1] and [2], this expression shows that �

↵

is proportional to the cross-section averaged over the
relative velocities between the two particles (after transforming to the center of mass frame, see e.g., Clayton 1968).
Therefore, using Equation (23) one arrives at the standard relation between the reaction rate and the velocity averaged
cross-section (e.g., Clayton 1968, §4; Rolfs & Rodney 1988, §3),

r
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2.3. Nuclear Statistical Equilibrium (NSE) and inverse reaction rates

Equation (2) shows that for every reaction, there is an inverse reaction. The relationship between the forward and
reverse rates, which only depends on the density, temperature, and the internal properties of the nuclei is generally
called detailed balance. In some cases, for example for �-decays or fission reactions, the inverse reactions are extremely
unlikely to occur and can be ignored. For other reactions, e.g., a neutron capture reaction, the inverse reaction can
occur very frequently and sometimes even more often than the forward reaction. Thus it is important to take inverse
reactions into account. At temperatures of about 5 GK and above, inverse strong reactions such as photodissociation
of nuclides can be in equilibrium with their forward reactions. For example, the reactions 196Au + n ⌦ 197Au + � and
20Ne + � ⌦ 16O + 4He can be in equilibrium at su�ciently high temperatures. The situation of all strong reactions
being in equilibrium is called Nuclear Statistical Equilibrium (NSE). This situation can also be thought of as an
equilibrium between the reaction of forming a nucleus (Z, N) from Z free protons and N free neutrons, and its inverse
reaction, namely completely dissociating a nucleus (Z, N) into Z protons and N neutrons. In other words, if NSE
holds, then the forward and inverse reactions,

(Z, N) ⌦ Z[p] + N [n], (26)

are in equilibrium for all nuclides that are part of the composition. Of course, there are no reactions that directly
create a nuclide (Z, N) out of Z protons and N neutrons. But there is a chain of strong reactions that connects (Z, N)
to free neutrons and protons. So if all strong reactions are in equilibrium, then we e↵ectively have the reactions shown
above and they are also in equilibrium. When nucleons are in chemical equilibrium with all other nuclear species, the
energetic cost of turning Z

i

protons and N
i

neutrons into a single nucleus must be zero, which requires

µ
i

= Z
i

µp + N
i

µn, (27)

where µ
i

is the chemical potential of species [i].
When the composition moves into NSE, the forward and inverse strong reactions approach equilibrium. In order

to ensure that the equilibrium composition determined by the forward and inverse reaction rates is the same as the
NSE composition computed from the equality of the chemical potentials, we need to compute the inverse reaction
rates directly from the forward rates and nuclide properties. Consider the reaction ↵ and its inverse reaction ↵0. In
equilibrium, each set of terms on the right-hand side of Equation (2) must be zero. Then, by the symmetry of the
di↵erential rate r

↵

= r
↵

0 and casting Equation (2) into Equation (9), we have

�
↵

Y

j2R↵

Y
N

↵
j

j,eq = �
↵

0

Y

l2P↵

Y
N

↵
l

l,eq , (28)

SkyNet 7

play a role. Therefore, weak interaction rates have a dependence �
↵,weak = �

↵,weak(T, n
B

, Y
e

, f{⌫}) where f{⌫} are the
externally specified neutrino distribution functions of the relevant neutrino species (see Appendix C). Although, weak
decay rates of nuclei are just constants when final state blocking by leptons can be safely ignored.

For two particle reactions, it is common to define the cross-section as (Peskin & Schroeder 1995, §4)

�
↵

(kµ

1 � kµ

2 ) =
1

vrel

"
Y

l2P↵

Z

[l]

#
�4

 
kµ

1 + kµ

2 �

X

l2P↵

kµ

l

!
r
↵

⇣
kµ

1 , kµ

2 , kµ

{l}

⌘
, (22)

where vrel is the relative velocity between particles [1] and [2]. Adopting the viewpoint that the [i]’s are stationary
targets and the [j]’s are incoming projectiles impinging on the targets, the cross section �

↵

can be interpreted as (e.g.,
Clayton 1968, §4)

�
↵

=
number of reactions per second per target [i]

flux of incoming projectiles [j]
=

R
i,j

/(n
i

V )

vrelnj

=
r
i,j

vrelni

n
j

, (23)

where R
i,j

is the number of reactions per second, r
i,j

= R
i,j

/V is the number of reactions per second per volume, and
n
i

, n
j

are the number densities of [i] and [j]. Assuming Boltzmann statistics so that (1 ± f
l

) ! 1 for the products,
Equation (7) gives

�
↵

= N

↵

n
B

Z

[1]

f1

n1

Z

[2]

f2

n2
vrel�↵

= N

↵

n
B

h�
↵

vreli, (24)

where N

↵

is the double counting factor from Equation (6). Since the distribution functions are normalized by the
densities of species [1] and [2], this expression shows that �

↵

is proportional to the cross-section averaged over the
relative velocities between the two particles (after transforming to the center of mass frame, see e.g., Clayton 1968).
Therefore, using Equation (23) one arrives at the standard relation between the reaction rate and the velocity averaged
cross-section (e.g., Clayton 1968, §4; Rolfs & Rodney 1988, §3),

r
i,j

= n�1
B

�
↵

n1n2 = n1n2N↵

h�
↵

vreli. (25)

2.3. Nuclear Statistical Equilibrium (NSE) and inverse reaction rates

Equation (2) shows that for every reaction, there is an inverse reaction. The relationship between the forward and
reverse rates, which only depends on the density, temperature, and the internal properties of the nuclei is generally
called detailed balance. In some cases, for example for �-decays or fission reactions, the inverse reactions are extremely
unlikely to occur and can be ignored. For other reactions, e.g., a neutron capture reaction, the inverse reaction can
occur very frequently and sometimes even more often than the forward reaction. Thus it is important to take inverse
reactions into account. At temperatures of about 5 GK and above, inverse strong reactions such as photodissociation
of nuclides can be in equilibrium with their forward reactions. For example, the reactions 196Au + n ⌦ 197Au + � and
20Ne + � ⌦ 16O + 4He can be in equilibrium at su�ciently high temperatures. The situation of all strong reactions
being in equilibrium is called Nuclear Statistical Equilibrium (NSE). This situation can also be thought of as an
equilibrium between the reaction of forming a nucleus (Z, N) from Z free protons and N free neutrons, and its inverse
reaction, namely completely dissociating a nucleus (Z, N) into Z protons and N neutrons. In other words, if NSE
holds, then the forward and inverse reactions,

(Z, N) ⌦ Z[p] + N [n], (26)

are in equilibrium for all nuclides that are part of the composition. Of course, there are no reactions that directly
create a nuclide (Z, N) out of Z protons and N neutrons. But there is a chain of strong reactions that connects (Z, N)
to free neutrons and protons. So if all strong reactions are in equilibrium, then we e↵ectively have the reactions shown
above and they are also in equilibrium. When nucleons are in chemical equilibrium with all other nuclear species, the
energetic cost of turning Z

i

protons and N
i

neutrons into a single nucleus must be zero, which requires

µ
i

= Z
i

µp + N
i

µn, (27)

where µ
i

is the chemical potential of species [i].
When the composition moves into NSE, the forward and inverse strong reactions approach equilibrium. In order

to ensure that the equilibrium composition determined by the forward and inverse reaction rates is the same as the
NSE composition computed from the equality of the chemical potentials, we need to compute the inverse reaction
rates directly from the forward rates and nuclide properties. Consider the reaction ↵ and its inverse reaction ↵0. In
equilibrium, each set of terms on the right-hand side of Equation (2) must be zero. Then, by the symmetry of the
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play a role. Therefore, weak interaction rates have a dependence �
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, f{⌫}) where f{⌫} are the
externally specified neutrino distribution functions of the relevant neutrino species (see Appendix C). Although, weak
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where vrel is the relative velocity between particles [1] and [2]. Adopting the viewpoint that the [i]’s are stationary
targets and the [j]’s are incoming projectiles impinging on the targets, the cross section �
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Clayton 1968, §4)

�
↵

=
number of reactions per second per target [i]

flux of incoming projectiles [j]
=

R
i,j

/(n
i

V )

vrelnj

=
r
i,j

vrelni

n
j

, (23)
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where N

↵

is the double counting factor from Equation (6). Since the distribution functions are normalized by the
densities of species [1] and [2], this expression shows that �

↵

is proportional to the cross-section averaged over the
relative velocities between the two particles (after transforming to the center of mass frame, see e.g., Clayton 1968).
Therefore, using Equation (23) one arrives at the standard relation between the reaction rate and the velocity averaged
cross-section (e.g., Clayton 1968, §4; Rolfs & Rodney 1988, §3),
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2.3. Nuclear Statistical Equilibrium (NSE) and inverse reaction rates
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equilibrium between the reaction of forming a nucleus (Z, N) from Z free protons and N free neutrons, and its inverse
reaction, namely completely dissociating a nucleus (Z, N) into Z protons and N neutrons. In other words, if NSE
holds, then the forward and inverse reactions,

(Z, N) ⌦ Z[p] + N [n], (26)

are in equilibrium for all nuclides that are part of the composition. Of course, there are no reactions that directly
create a nuclide (Z, N) out of Z protons and N neutrons. But there is a chain of strong reactions that connects (Z, N)
to free neutrons and protons. So if all strong reactions are in equilibrium, then we e↵ectively have the reactions shown
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neutrons into a single nucleus must be zero, which requires
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When the composition moves into NSE, the forward and inverse strong reactions approach equilibrium. In order

to ensure that the equilibrium composition determined by the forward and inverse reaction rates is the same as the
NSE composition computed from the equality of the chemical potentials, we need to compute the inverse reaction
rates directly from the forward rates and nuclide properties. Consider the reaction ↵ and its inverse reaction ↵0. In
equilibrium, each set of terms on the right-hand side of Equation (2) must be zero. Then, by the symmetry of the
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Velocity averaged cross-section:





Self-heating
• Neutron captures and beta 

decays release rest-mass  
energy


• Increases the entropy of the 
fluid and keeps the 
temperature of the 
expanding gas near constant 


• This can substantially impact 
the path of the r-process
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Figure 1. The final abundances of some selected nucleosynthesis calculations. Left: Ye = 0.01, 0.19, 0.25, 0.50, s = 10 kB baryon�1, and
⌧ = 7.1ms. The full r-process is made, with substantial amounts of lanthanides and actinides, for Ye = 0.01 and Ye = 0.19. The Ye = 0.25
trajectory is neutron-rich enough to make the second r-process peak, but not the third and not a significant amount of lanthanides. In
the symmetric case (Ye = 0.5), mostly 4He and iron-peak elements are produced. Right: Ye = 0.25, s = 1.0, 3.2, 10, 100 kB baryon�1, and
⌧ = 7.1ms. With s = 1 kB baryon�1 a jagged r-process is obtained because there are only few free neutrons per seed nucleus available and
nuclides with even neutron numbers are favored. Even though there are not many free neutrons available, there is still a significant amount
of lanthanides in the s = 1 kB baryon�1 case because the initial seed nuclei are very heavy. At higher entropies, the initial seeds become
lighter and the initial free neutron abundance increases. However, the increase in the initial free neutron abundance is not enough to o↵set
the decrease in the initial mass of the seeds and so we obtain a less complete r-process. The situation is reversed at s = 100 kB baryon�1,
where there is a very high neutron-to-seed ratio. In that case, a significant fraction of ↵ particles are also captured on the seed nuclei. This
leads to a full r-process in the s = 100 kB baryon�1 case.

Figure 2. A frame from the animation of the nucleosynthesis calculation for Ye = 0.01, s = 10 kB baryon�1, and ⌧ = 7.1ms. The frame
shows the full extent of the r-process just when free neutrons get exhausted. The plot in the upper left corner shows the temperature,
density, and heating rate as function of time. The colored bands in the chart of nuclides correspond to the mass bins in the histogram at
the bottom. The histogram shows the mass fractions on a linear scale while the blue curve shows the abundances as a function of mass on
a logarithmic scale. The full animations are available at http://stellarcollapse.org/lippunerroberts2015.

Robust r-process in neutron star mergers 1945

Figure 4. Top: density and temperature evolution for a bundle of trajecto-
ries, colour-coded by density at T = 10 GK. Middle: resulting final abun-
dances distribution. Their averaged distribution is shown as a black dashed
line, and a bold red line represents abundances for a trajectory without
heating. All trajectories represent a subset from the standard 1.4–1.4 M⊙
merger. Bottom: distribution of abundances for a variety of different (ns2

and nsbh) merger cases. All different astrophysical systems yield essentially
identical resulting abundances.

with Sn(Z, A) and Y(Z, A) being the neutron separation energy and
abundance of the nucleus (Z, A). The average separation energy
decreases when matter moves away from stability and it is, by
definition, zero at the neutron drip line. The second panel of Fig. 5
shows that the average separation energy is initially below ≈1 MeV,
which indicates that the r-process path proceeds along the neutron

Figure 5. Evolution of the neutron density Nn (top), average neutron sep-
aration energy ⟨Sn⟩ (middle) and average proton number ⟨Z⟩ (bottom) for
five trajectories from run 12 with different initial densities (in the range
1012−1013 g cm−3).

drip line. The average proton number increases to Z = 40 at t ≈
10−2 s where the neutron separation energy reaches a maximum.
This local maximum occurs when the magic number N = 82 is over-
come. Whenever the r-process path reaches a neutron magic number,
it moves closer to the line of β-stability (i.e. larger Sn values) by
increasing Z without changing N. After the matter flow passes N =
82 (here around Z = 40), the ⟨Sn⟩ decreases because the path again
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Because equilibrium conditions hold initially, the properties fluid 
elements are described reasonably well by three parameters:

Electron Fraction at 5 GK: Most important, sets the number 
of (free) neutrons 

Entropy per baryon:
important, helps set the number 
of free neutrons and determines 

density during r-process 

Impacts when reactions fall out of 
NSE, also impacts non-

equilibrium seed formation for 
high entropy ejecta

Dynamical timescale:
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r-process path depends on 
conditions

Neutrinos and BHNS r-Process Nucleosynthesis 9

Figure 7. Illustration of how the first r-process peak is produced
by electron neutrino captures on neutrons for a single SPH par-
ticle. This SPH particle had initial Ye = 0.11, initial entropy
s = 9.7 kB baryon�1, and an asymptotic velocity v/c = 0.5. Top
panel: The solid lines show the abundance of material in the first
r-process peak, Y1st, as a function of time (i.e. material with
72  A  79), the dashed lines show the integrated number
of protons produced by weak interactions after time t divided by
six, Ys,⌫ =

R1
t dtYn/6(�⌫e + �e+ ), and the dotted lines show the

neutron abundance Yn. Ys,⌫ gives the number of low mass seed
nuclei produced by neutrino interactions. The neutrino seed nuclei
produced at early times are burned past the first r-process peak,
but the seed nuclei produced after the time when Ys,⌫ = Y1st,final

do not get burned passed the first peak before neutrons are ex-
hausted, and so they will end up in the first peak. Bottom panel:
The solid lines show the temperature of the particle as a function
of time, the dashed lines show the timescale to process material to
the first peak, ⌧(6,25), and the dotted lines show the destruction
timescale of the first peak, ⌧(26,28), which are defined in the text.
In this particle, there is no significant variation with neutrino
luminosity of the temperature or the r-process path. Therefore,
the two timescales do not change with the amount of neutrino
irradiation.

peak would be set by the number of seed nuclei produced
after a time just before neutron exhaustion. To illustrate
when the nuclei trapped in the first peak are produced, we
show the total number of seed nuclei produced by neutrino
interactions after time t

Ys,⌫(t) =
1
6

Z 1

t

Yn(�⌫e + �e+)dt (7)

in Figure 7, along with the time dependence of the first
peak abundance, Y1st, and the neutron abundance Yn. Ys,⌫

is just the number fraction of protons produced by weak in-
teractions after time t divided by six, since it requires six
protons to produce a seed nucleus that can capture neu-
trons. Material will be processed through the first peak on
some timescale ⌧1st. Let tex be the time at which neutrons

Figure 8. The same as Figure 7, except for a di↵erent ther-
modynamic trajectory. This SPH particle had initial Ye = 0.05,
initial entropy s = 4.33 kB baryon�1, and an asymptotic velocity
v/c = 0.29. Because of the lower velocity, lower initial entropy,
and lower Ye present in this particle relative to the particle shown
in Figure 7, neutrino interactions significantly alter the thermo-
dynamic state of the material and ⌧(6,25). This causes the first
peak abundance to vary non-monotonically with the neutrino lu-
minosity.

Figure 9. The r-process path for the SPH particle shown in Fig-
ure 8 for di↵erent neutrino luminosities at 100 ms into the cal-
culation. The inset shows the mass summed abundances at the
same time. Notice how the path di↵ers for di↵erent neutrino lu-
minosities.

are exhausted and tprod be the time after which neutrino
produced seed nuclei get trapped in the first peak. Seed nu-
clei produced at times earlier than tprod = tex � ⌧1st will
be burned past the first peak, while seed nuclei produced
within a time ⌧1st of neutron exhaustion will end up in the
first peak. We can estimate ⌧1st by looking for solutions of
Ys,⌫(tprod) = Y1st,final. Inspecting Figure 7, we find tprod is
70 to 100 ms and tex is 520 to 600 ms for L⌫e,52 ranging

MNRAS 000, 000–000 (0000)

• Higher temperature implies 
path lies closer to stability  
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to mass differences


• Neutron separation 
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neutron closed shells, 
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along closed shells until 
closer to stability   

r-process paths predicted by the waiting point 
approximation for two different outflows
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Figure 3.11: A plot of the log10 of the abundance (YA) against mass number (A) for the

neutron separation variations, where the difference between the maximum and minimum
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of the abundances for these variations with a standard deviations shown by the regions, the
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are the scaled solar system abundances [51].
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Sensitivity to input nuclear 
physics

• Propagating mass 
uncertainties through all 
inputs to the reaction 
network


• neutron captures


• photo-dissociation 


• beta-decays   
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FIG. 3: Variances of the ensembles of final abundance pat-
terns (shaded bands) for the four sensitivity studies described
in this work, compared to scaled solar r-process residuals
(black circles) from [64].

wind, high entropy hot wind, cold wind and neutron star
merger studies are shown in Fig. 3 compared to the solar
isotopic r-process residuals.

The dependence of r-process predictions on the uncer-
tainties in nuclear masses is shown by variance bands for
four di↵erent astrophysical conditions in Fig. 3. These
four trajectories have distinct r-process paths and dy-
namics during freeze-out which means the variance in
abundances in each environment comes from a di↵erent
aspect of the dependence on nuclear masses as mentioned
above. This result is only obtainable by using our ap-
proach of consistently propagating uncertainties from nu-
clear masses to all of the relevant nuclear quantities for
the r process.

One may be tempted to rule out the hot conditions
as the variance bands are clearly o↵set for the third
(A = 195) peak. However, we note that our approach
here actually underestimates these bands in all scenar-

ios — larger uncertainties from reaction rate calculations
are not included, which are particularly important for
the hot scenarios, and mass changes in these studies are
done on an individual basis. Methods that rely on a
global Monte Carlo approach have the ability to resolve
these drawbacks. Preliminary work [29] in this direction
suggests details of the abundance pattern can be clearly
resolved if mass uncertainties are reduced to less than
0.1 MeV. The next generation of nuclear mass measure-
ment campaigns will be crucial in the progress toward
this ambitious goal.

With this caution in mind, Fig. 3 confirms our previous
results that mass model uncertainties are currently too
large for precision abundance pattern predictions capa-

ble of di↵erentiating between r-process conditions [44].
For example, the formation of the A ⇠ 160 rare earth
peak can in principle be used to constrain the r-process
site [48], however the variance bands in Fig. 3 are larger
than the peak itself. This indicates that the features of
the mass surface in this region responsible for rare earth
peak formation are likely on the order of the rms value
of FRDM2012 or smaller.
We also note that the new FRDM2012 masses show

marked improvement over the FRDM1995 masses in
matching features from the solar pattern, as is clear from
a comparison of the final abundances of Fig. 3 to those
in Ref. [44]. The most notable improvement of the mass
model comes from an enhanced description of nuclei in
the transition region between the N ⇠ 82 region and the
rare earth region.

VI. CONCLUSION

In summary, we have shown for the first time how un-
certainties in individual nuclear masses propagate to in-
fluence and shape the r-process abundance distribution
across the chart of nuclides. We consider variations of
individual nuclear masses and recalculate consistently all
relevant Q-values, neutron capture rates, photodissoci-
ation rates, �-decay rates and �-delayed neutron emis-
sion probabilities, as shown in Fig. 1. We find mass
uncertainties of ±0.5 MeV have a significant impact on
r-process abundance predictions as summarized in Fig. 2.
In terms of our metric, a value of F ⇠ 20 represents a
large local change or a global shift in r-process abun-
dances.
We explore changes to masses of ±0.5 MeV from

FRDM2012 in four astrophysical trajectories: a low en-
tropy hot wind, a high entropy hot wind, a cold wind,
and a neutron star merger. Shifts in the equilibrium
path play the dominant role in a hot r process, and our
results here mirror earlier studies [36, 38] where mass
variations were propagated only to the photodissocia-
tion rates. Changes to weak decay properties and neu-
tron capture rates are essential to include particularly in
the cold wind and merger cases where photodissociation
channel is suppressed. We find a similar dependence on
nuclear masses for all astrophysical conditions studied,
as shown in Fig. 3, due to the propagation of mass un-
certainties to all relevant quantities. The nuclei with the
most impactful masses lie along the equilibrium r-process
path, as expected, and also along the decay paths to
stability. This result strongly reinforces our conclusions
from previous studies that understanding freeze-out is
critical for predicting r-process abundances under any
astrophysical conditions.
Many of the influential nuclear masses identified in our

studies will be accessible to future radioactive beam facil-
ities. These measurements have the potential to dramati-
cally improve the precision of r-process simulations. Still,
some masses will remain beyond experimental reach. It is

Mumpower et al. (2015)



Fission: The end of the  
r-process

Figure 1. Final abundances of the integrated ejecta around the second and third peak for an NSM (Korobkin et al. 2012; Rosswog et al. 2013) at a simulation time
t 106= s, employing the FRDM mass model combined with four different fission fragment distribution models (see the text). For reasons of clarity the results are
presented in two graphs. The abundances for Th and U are indicated by crosses. In the left-hand panel the lower crosses belong to the Panov et al. (2008) model
(dashed line), while the lower crosses in the right-hand panel belong to the ABLA07 distribution model (dashed line). The dots represent the solar r-process
abundance pattern (Sneden et al. 2008).

Figure 2. Fission rates (at t = 1 s) in s−1 for (a) β-delayed and (b) neutron-induced fission at freeze-out from (n,γ)–(γ,n) equilibrium for one representative trajectory
when utilizing the FRDM mass model and Panov et al. (2010) fission rates. (c): Corresponding fission fragment production. The distribution model here is ABLA07.
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•Once material reaches nuclei susceptible to either neutron induced or 
beta-delayed fission, the r-process reaches its maximum extent 


•Material is pushed back down to lower mass
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+ (2− f)Γ195(t)Y195

Ẏ195=−Γ195(t)Y195 + ΓEarth(t)YEarth (10)

where Y is the abundance of each peak and Γ is the rate
of decay leaving a region, with the subscripts correspond-
ing to the A ≈ 130, rare earth, and A ≈ 195 peaks. Here
f is the distribution of fission daughter products between
the A ≈ 130 and rare earth regions. For purposes of il-
lustrating the toy model, we take all fission products as
arriving to the A ≈ 130 region, f = 2. The equilibrium
(steady β-flow) behavior of fission cycling is depicted in
the far right-hand region of Fig. 1. For discussion of solu-
tions for long-time fission cycling see Seeger et al. (1965).
The transient region prior to steady β-flow equilibrium
is dependent on the flow (decay rate) of material leaving
each peak region, Γ130, ΓEarth, and Γ195. The effective
flow out of a region is determined by the β-decay rate of
each isotopic chain, as material is in (n, γ) ! (γ, n) equi-
librium during this fission cycling phase. Additionally,
this outflow is determined by the population of nuclides
within a peak, since the individual β-decay rate changes
from nuclide to nuclide. As a consequence, various nu-
clides are populated while material is flowing through
each peak, leading to changes in the effective flow out
of each peak. For example, the effective flow rate in the
A ≈ 130 peak slows as the closed shell nuclides, with
slow β-decay rates, are populated. We employ our phe-
nomenological model to highlight the change in the effec-
tive flow rate in Fig. 3, for the A ≈ 130 peak region with
a Ye = 0.05 at the start of the r-process. Here, the fluc-
tuation in the decay rates of a peak corresponds to the
changing of individual nuclide abundances. The move-
ment of material within a peak is demonstrated by the
corresponding change of the weighted atomic number, Z.
As the conditions in Fig. 3 are very neutron-rich, suffi-
cient for steady β-flow, the right-most portion depicts a
straight line for both the effective flow rate and Z, since
steady β-flow leads to isotopic chain abundances deter-
mined by the β-decay rate of each chain.

4. STEADY BETA FLOW

As discussed in Sec. 1, the abundances of the r-process
become fully determined under conditions where both fis-
sion cycling and steady β-flow occur. We now examine
consequences to the final r-process abundances resulting
from steady β-flow. In Fig. 4, the steady-β flow condi-
tion, Eqn. 5, is tested and fulfilled for very neutron-rich
conditions in the neutrino-driven wind, appearing as a
straight line between the second and third peaks of the
r-process, the main r-process region. For less neutron-
rich conditions, steady-β flow does not obtain as there
are not enough free neutrons to sustain re-population of
the seed nuclei by fission cycling.
A set of typical abundances resulting from steady-β

flow, occurring for very neutron-rich conditions in the
neutrino-driven wind, are depicted in Fig. 5. The indi-
vidual Ye’s are produced by a unique choice of initial neu-
trino and anti-neutrino luminosities, in the same manner
as Fig. 1. Our abundance patterns reproduce the gen-
eral peak structure of the main r-process between the
second and third peaks and is robust over a wide range of
conditions in the neutrino-driven wind, directly resulting
from the pairing of both fission cycling and steady β-flow.
Improvement to a nuclide by nuclide abundance com-
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Fig. 3.— Under very neutron-rich conditions the effec-
tive decay rate of the peaks oscillate until equilibrating at the
steady β-flow rate. The abundance weighted atomic number,
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of an isotopic chain (solid) for the second, A ≈ 130, peak region,
versus time, t. The oscillation of the decay rates in the peak regions
are due to the changing population of different nuclides during the
course of fission cycling. To elucidate abundance changes between
isotopic chains, the data above results from our phenomenological
model, Eqn. 8, under conditions with an Ye = 0.05 at the start of
the r-process epoch (T9 ≈ 2.5).
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Ye’s in the neutrino-driven wind. For the case with an Ye = 0.1 at
the start of the r-process epoch, conditions are sufficiently neutron-
rich for steady β-flow, marked by a straight line. The case with
Ye = 0.3 is not neutron-rich enough for steady β-flow to obtain.

From Beun et al. 2008

• Fission takes single seed, turns 
it into two back near the first 
peak 


• If the initial neutron-to-seed ratio 
is high, material can cycle 
through this process a number 
of times 


•Distribution of daughter nuclei 
important to final pattern 



Late-time Fission
• Fission after neutron 

exhaustion, either by 
beta-delayed fission or 
spontaneous fission 
can substantially 
impact the abundance 
pattern at low mass


• Fission fragment 
distributions are not 
erased by subsequent 
neutron capture
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What is the astrophysical 
source of the r-process?
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GW170817
∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-2

GW Detections

LIGO-Livingston, and Virgo data respectively, making it
the loudest gravitational-wave signal so far detected. Two
matched-filter binary-coalescence searches targeting
sources with total mass between 2 and 500 M⊙ in the
detector frame were used to estimate the significance of this
event [9,12,30,32,73,81–83,86,87,91–97]. The searches
analyzed 5.9 days of LIGO data between August 13,
2017 02∶00 UTC and August 21, 2017 01∶05 UTC.
Events are assigned a detection-statistic value that ranks
their probability of being a gravitational-wave signal. Each
search uses a different method to compute this statistic and
measure the search background—the rate at which detector
noise produces events with a detection-statistic value equal
to or higher than the candidate event.
GW170817 was identified as the most significant event

in the 5.9 days of data, with an estimated false alarm rate of
one in 1.1 × 106 years with one search [81,83], and a
consistent bound of less than one in 8.0 × 104 years for the
other [73,86,87]. The second most significant signal in this
analysis of 5.9 days of data is GW170814, which has a
combined SNR of 18.3 [29]. Virgo data were not used in
these significance estimates, but were used in the sky
localization of the source and inference of the source
properties.

IV. SOURCE PROPERTIES

General relativity makes detailed predictions for the
inspiral and coalescence of two compact objects, which

may be neutron stars or black holes. At early times, for low
orbital and gravitational-wave frequencies, the chirplike
time evolution of the frequency is determined primarily by
a specific combination of the component masses m1 and
m2, the chirp mass M ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5. As the
orbit shrinks and the gravitational-wave frequency grows
rapidly, the gravitational-wave phase is increasingly influ-
enced by relativistic effects related to the mass ratio
q ¼ m2=m1, where m1 ≥ m2, as well as spin-orbit and
spin-spin couplings [98].
The details of the objects’ internal structure become

important as the orbital separation approaches the size of
the bodies. For neutron stars, the tidal field of the
companion induces a mass-quadrupole moment [99,100]
and accelerates the coalescence [101]. The ratio of the
induced quadrupole moment to the external tidal field is
proportional to the tidal deformability (or polarizability)
Λ ¼ ð2=3Þk2½ðc2=GÞðR=mÞ&5, where k2 is the second Love
number and R is the stellar radius. Both R and k2 are fixed
for a given stellar massm by the equation of state (EOS) for
neutron-star matter, with k2 ≃ 0.05–0.15 for realistic neu-
tron stars [102–104]. Black holes are expected to have
k2 ¼ 0 [99,105–109], so this effect would be absent.
As the gravitational-wave frequency increases, tidal

effects in binary neutron stars increasingly affect the phase
and become significant above fGW ≃ 600 Hz, so they are
potentially observable [103,110–116]. Tidal deformabil-
ities correlate with masses and spins, and our measurements
are sensitive to the accuracy with which we describe
the point-mass, spin, and tidal dynamics [113,117–119].
The point-mass dynamics has been calculated within the
post-Newtonian framework [34,36,37], effective-one-body
formalism [10,120–125], and with a phenomenological
approach [126–131]. Results presented here are obtained
using a frequency domain post-Newtonian waveform
model [30] that includes dynamical effects from tidal
interactions [132], point-mass spin-spin interactions
[34,37,133,134], and couplings between the orbital angular
momentum and the orbit-aligned dimensionless spin com-
ponents of the stars χz [92].
The properties of gravitational-wave sources are inferred

by matching the data with predicted waveforms. We
perform a Bayesian analysis in the frequency range
30–2048 Hz that includes the effects of the 1σ calibration
uncertainties on the received signal [135,136] (< 7% in
amplitude and 3° in phase for the LIGO detectors [137] and
10% and 10° for Virgo at the time of the event). Unless
otherwise specified, bounds on the properties of
GW170817 presented in the text and in Table I are 90%
posterior probability intervals that enclose systematic
differences from currently available waveform models.
To ensure that the applied glitch mitigation procedure

previously discussed in Sec. II (see Fig. 2) did not bias the
estimated parameters, we added simulated signals with
known parameters to data that contained glitches analogous
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FIG. 3. Sky location reconstructed for GW170817 by a rapid
localization algorithm from a Hanford-Livingston (190 deg2,
light blue contours) and Hanford-Livingston-Virgo (31 deg2,
dark blue contours) analysis. A higher latency Hanford-Living-
ston-Virgo analysis improved the localization (28 deg2, green
contours). In the top-right inset panel, the reticle marks the
position of the apparent host galaxy NGC 4993. The bottom-right
panel shows the a posteriori luminosity distance distribution
from the three gravitational-wave localization analyses. The
distance of NGC 4993, assuming the redshift from the NASA/
IPAC Extragalactic Database [89] and standard cosmological
parameters [90], is shown with a vertical line.
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GW170817 + EM

Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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EoS Constraints from In-
Spiral

Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817
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We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the
tidal deformabilities and radii of neutron stars. We perform Bayesian parameter estimation with the source
location and distance informed by electromagnetic observations. We also assume that the two stars have
the same equation of state; we demonstrate that for stars with masses comparable to the component masses
of GW170817, this is effectively implemented by assuming that the stars’ dimensionless tidal deforma-
bilities are determined by the binary’s mass ratio q by ⇤

1

/⇤
2

= q6. We investigate different choices of
prior on the component masses of the neutron stars. We find that the tidal deformability and 90% credible
interval is ⇤̃ = 222+420

�138

for a uniform component mass prior, ⇤̃ = 245+453

�151

for a component mass prior
informed by radio observations of Galactic double neutron stars, and ⇤̃ = 233+448

�144

for a component mass
prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron
stars across all mass priors of 8.9  R̂  13.2 km, with a mean value of hR̂i = 10.8 km. Our results are
the first measurement of tidal deformability with a physical constraint on the star’s equation of state and
place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.

PACS numbers: 95.85.Sz, 26.60.Kp, 97.80.-d

Introduction.—On August 17, 2017 LIGO and Virgo ob-
served gravitational waves from a binary neutron star coa-
lescence, GW170817 [1]. This observation can be used
to explore the equation of state (EOS) of matter at super-
nuclear densities [2, 3]. This information is encoded as a
change in gravitational-wave phase evolution caused by the
tidal deformation of the neutron stars [4]. At leading order,
the tidal effects are imprinted in the gravitational-wave sig-
nal through the binary tidal deformability [4, 5]

˜

⇤ =

16

13

(12q + 1)⇤

1

+ (12 + q)q4⇤
2

(1 + q)5
, (1)

where q = m
2

/m
1

 1 is the binary’s mass ratio [cf.
Eq. (34) of Ref. [6]]. The deformability of each star is

⇤

1,2

=

2

3

k
2

✓
R

1,2

c2

Gm
1,2

◆
5

, (2)

where k
2

is the tidal Love number [4, 5], which depends
on the star’s mass and the EOS. R

1,2

and m
1,2

are the areal
radii and masses of the neutron stars, respectively.

In the results of Ref. [1], the priors on ⇤

1,2

are taken
to be completely uncorrelated, which is equivalent to as-
suming that each star may have a different EOS. Here, we
reanalyze the gravitational-wave data using Bayesian in-
ference [7–9] to measure the tidal deformability, using a
correlation between ⇤

1

and ⇤

2

which follows from the as-
sumption that both stars have the same EOS. We repeat our
analysis without the common EOS constraint and calculate
the Bayes factor that compares the evidences for these two
models. We also fix the sky position and distance from
electromagnetic observations [10, 11]. We study the effect
of the prior for the component masses by performing anal-
yses with three different priors: the first is uniform between

1 and 2M�, the second is informed by radio observations
of double neutron star binaries, and the third is informed
by the masses of isolated pulsars [12].

The common equation of state constraint.—To explore
imposing a common EOS constraint, we employ a piece-
wise polytrope scheme [13] to simulate thousands of
equations of state. Each EOS obeys causality, connects
at low densities to the well-known EOS of neutron star
crusts [14], is constrained by experimental and theoret-
ical studies of the symmetry properties of matter near
the nuclear saturation density, and satisfies the observa-
tional constraint for the maximum mass of a neutron star,
m

max

� 2M� [15]. Figure 1 shows the results of Tolman-
Oppenheimer-Volkoff (TOV) integrations [16, 17] to deter-
mine ⇤ as functions of m, R, and the EOS. Each config-
uration is color coded according to its radius. In the rele-
vant mass range, ⇤ generally varies as m�6. For a given
mass m, there is an inherent spread of about a factor of
ten in ⇤, which is correlated with R6. We find that the
star’s tidal deformability is related to its compactness pa-
rameter � = Gm/(Rc2) by the relation ⇤ ' a��6.
We find that a = 0.0093 ± 0.0007 bounds this relation
if 1.1M�  m  1.6M� (note that this is a bound, not
a confidence interval). The additional power of ��1 in the
⇤�� relation, relative to ��5 in Eq. (2), originates because
the dimensionless tidal Love number, k

2

, varies roughly as
��1 for masses � 1M�, although this is not the case for
all masses [17]. For m ! 0 we see that k

2

! 0 so that k
2

is proportional to � with a positive power, but since neu-
tron stars with m < 1M� are physically unrealistic, that
domain is not pertinent to this Letter.

We observed that, for nearly every specific EOS, the
range of stellar radii in the mass range of interest for
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FIG. 2. Posterior probability densities for ⇤
1,2

with the common EOS constraint using uniform (left), double neutron stars (middle),
and Galactic neutron stars (right) component mass priors. The 50% and 90% credible region contours are shown as solid curves.
Overlaid are contours of ⇤̃ (in magenta) and q (in gray). The values of ⇤

1

and ⇤
2

forbidden by causality have been excluded from the
posteriors.

three different priors on the binary’s component masses.
First, we assume a uniform prior on each star’s mass, with
m

1,2

⇠ U [1, 2]M�. Then, we assume a Gaussian prior
on the component masses m

1,2

⇠ N(µ = 1.33,� =

0.09)M�, which is a fit to masses of neutron stars ob-
served in double neutron star systems [12]. The third prior
assumes that the component masses are drawn from a fit
to the observed mass distributions of recycled and slow
pulsars in the Galaxy with m

1

⇠ N(µ = 1.54,� =

0.23)M� and m
2

⇠ N(µ = 1.49,� = 0.19)M� [12].
We impose the constraint m

1

� m
2

which leads to ⇤

2

�
⇤

1

. For all our analyses, the prior on the component spins
is �

1,2

⇠ U [�0.05, 0.05], consistent with the expected
spins of field binaries when they enter the LIGO-Virgo sen-
sitive band [35].

Results.—We perform parameter estimation for each
mass prior with and without the common EOS constraint
and calculate the Bayes factor—the ratio of the evidences
p(~d(t)|H)—between the common EOS constrained and
unconstrained analyses. We find Bayes factors B of 369,
125, and 612 for the three mass priors, respectively, indi-
cating that the data strongly favor the common EOS con-
straint in all cases. The full posterior probability densities
of the parameters p(~✓|~d(t), H) for the common EOS runs
are shown in the Supplemental Material [18] and are avail-
able for download at Ref. [36]. Figure 2 shows the pos-
terior probability densities for ⇤

1

and ⇤

2

with 90% and
50% credible region contours. Overlaid are q contours
and ˜

⇤ contours obtained from Eq. (1), ⇤ ' a��6, and
R

1

' R
2

' ˆR as

⇤

1

(

˜

⇤, q) =
13

16

˜

⇤

q2(1 + q)4

12q2 � 11q + 12

, ⇤

2

(

˜

⇤, q) = q�6

⇤

1

.

(9)
Because of our constraint ⇤

2

� ⇤

1

, our credible con-
tours are confined to the region where q  1. One
can easily demonstrate that ⇤

2

� ⇤

1

is valid unless

(c2/G)dR/dm > 1, which is impossible for realis-
tic equations of state. For the entire set of piecewise
polytropes satisfying m

max

> 2M� we considered,
(c2/G)dR/dm never exceeded 0.26. Even if a first or-
der phase transition appeared in stars with masses between
m

2

and m
1

, it would necessarily be true that dR/dm < 0

across the transition. Because of the q dependence of ⇤
1

,
⇤

2

, the credible region enclosed by the contours broadens
from the double neutron star (most restricted), to the pul-
sar, to the uniform mass (least restricted) priors. However,
the upper bound of the credible region is robust.

We find ˜

⇤ = 205

+415

�167

for the uniform component mass
prior, ˜⇤ = 234

+452

�180

for the prior informed by double neu-
tron star binaries in the Galaxy, and ˜

⇤ = 218

+445

�173

for the
prior informed by all Galactic neutron star masses (errors
represent 90% credible intervals). Our measurement of ˜

⇤

appears to be robust to the choice of component mass prior,
within the (relatively large) statistical errors on its measure-
ment. The Bayes factors comparing the evidence from the
three mass priors are of order unity, so we cannot claim any
preference between the mass priors.

The 90% credible intervals on ˜

⇤ obtained from the
gravitational-wave observations include regions forbidden
by causality. Applying a constraint to our posteriors for the
causal lower limit of ⇤ as a function of m [37], we ob-
tain ˜

⇤ = 222

+420

�138

for the uniform component mass prior,
˜

⇤ = 245

+453

�151

for the prior informed by double neutron
star binaries in the Galaxy, and ˜

⇤ = 233

+448

�144

for the prior
informed by all Galactic neutron star masses (errors repre-
sent 90% credible intervals). Using Eq. (6), we map our
M posteriors and ˜

⇤ posteriors (with the causal lower limit
applied) to ˆR ' R

1.4

posteriors, allowing us to estimate
the common radius of the neutron stars for GW170817 for
each mass prior. Figure 3 shows the posterior probability
distribution for the binary tidal deformation ˜

⇤ and the com-

Late inspiral

Eij

Qij = �⇤Eij

Neutron stars are extended bodies with structure

Induced  
quadrupole  

moment

Quadrupolar  
tidal  
field 

Tidal deformability  
of a NS

• Tidal fields excite NS deformations and 
remove orbital energy in addition to GW 
losses  


• Introduces a measurable correction to 
the phase evolution of the GWs, but at 
5PN order

phase. Let !n, !1;n and Qn
ij be the frequency, the contri-

bution to !1 and the contribution toQij of modes of the star
with l ! 2 and with n radial nodes, so that !1 ! !n!1;n
and Qij ! !nQn

ij. Writing the relative displacement as
x ! "r cos"; r sin"; 0#, the action for the system is

 

S !
Z
dt
!

1

2
" _r2 $ 1

2
"r2 _"2 $M"

r

"
% 1

2

Z
dtQijEij

$
X
n

Z
dt

1

4!1;n!2
n

!
_Qn
ij

_Qn
ij %!2

nQn
ijQ

n
ij

"
: (5)

Here M and " are the total and reduced masses, and Eij !
%m2@i@j"1=r# is the tidal field. This action is valid to
leading order in the orbital potential but to all orders in
the internal potentials of the NSs, except that it neglects
GW dissipation, because Qij and Eij are defined in the
star’s local asymptotic rest frame [20].

Using the action (5), adding the leading order, Burke-
Thorne GW dissipation terms, and defining the total quad-
rupole QT

ij ! Qij $"xixj %"r2#ij=3 with Qij ! !nQn
ij,

gives the equations of motion

 

#xi $M
r2 n

i ! m2

2"
Qjk@i@j@k

1

r
% 2

5
xj
d5QT

ij

dt5
; (6a)

#Qn
ij $!2

nQn
ij ! m2!1;n!2

n@i@j
1

r
% 2

5
!1;n!2

n
d5QT

ij

dt5
: (6b)

By repeatedly differentiating QT
ij and eliminating second

order time derivative terms using the conservative parts of
Eqs. (6), we can express d5QT

ij=dt
5 in terms of xi, _xi, Qn

ij

and _Qn
ij and obtain a second order set of equations; this

casts Eqs. (6) into a numerically integrable form.
When GW damping is neglected, there exist equilibrium

solutions with r ! const, " ! "0 $!t for which QT
ij is

static in the rotating frame. Working to leading order in
!1;n, we have QT

11 !Q0 $Q cos"2"#, QT
22 !Q0 %

Q cos"2"#, QT
12 !Q sin"2"#, QT

33 ! %2Q0, where

 Q ! 1

2
"r2 $

X
n

3m2!1;n

2"1% 4x2
n#r3 ;

Q0 ! 1

6
"r2 $

X
n

m2!1;n

2r3

(7)

and xn ! !=!n. Substituting these solutions back into the
action (5), and into the quadrupole formula _E ! % 1

5 &
hQ
:::T
ijQ
:::T
iji for the GW damping, provides an effective de-

scription of the orbital dynamics for quasicircular inspirals
in the adiabatic limit. We obtain for the orbital radius,
energy and energy time derivative

 

r"!# ! M1=3!%2=3
!

1$ 3

4

X
n
$ng1"xn#

"
; (8a)

E"!# ! %"
2
"M!#2=3

!
1% 9

4

X
n
$ng2"xn#

"
; (8b)

_E"!# ! % 32

5
M4=3"2!10=3

!
1$ 6

X
n
$ng3"xn#

"
; (8c)

where $n ! m2!1;n!10=3m%1
1 M%5=3, g1"x# ! 1$ 3="1%

4x2#, g2"x# ! 1$ "3% 4x2#"1% 4x2#%2, and g3"x# !
"M=m2 $ 2% 2x2#="1% 4x2#. Using the formula
d2$=d!2 ! 2"dE=d!#= _E for the phase $"f# of the
Fourier transform of the GW signal at GW frequency f !
!=% [21] now gives for the tidal phase correction

 #$"f# ! % 15m2
2

16"2M5

X
n
!1;n

Z v

vi
dv0v0"v3 % v03#g4"x0n#;

g4"x# !
2M

m2"1% 4x2# $
22% 117x2 $ 348x4 % 352x6

"1% 4x2#3 :

(9)

Here v ! "%Mf#1=3, vi is an arbitrary constant related to
the initial time and phase of the waveform, and x0n !
"v0#3="M!n#. In the limit !' !n assumed in most pre-
vious analyses [8,9,11,12], we get

 #$ ! % 9

16

v5

"M4

!#
11
m2

m1
$ M
m1

$
!1 $ 1$ 2

"
; (10)

which depends on internal structure only through !1 and
!2. Here we have added the contribution from star 2. The
phase (10) is formally of post-5-Newtonian (P5N) order,
but it is larger than the point-particle P5N terms (which are
currently unknown) by ("R=M#5 ( 105.

V. ACCURACY OF MODEL

We will analyze the information contained in the portion
of the signal before f ! 400 Hz. This frequency was
chosen to be at least 20% smaller than the frequency of
the innermost stable circular orbit [22] for a conservatively
large polytropic NS model with n ! 1:0, M ! 1:4M), and
R ! 19 km. We now argue that in this frequency band, the
simple model (10) of the phase correction is sufficiently
accurate for our purposes.

We consider six types of corrections to (10). For each
correction, we estimate its numerical value at the fre-
quency f ! 400 Hz for a binary of two identical m !
1:4M), R ! 15, n ! 1:0 stars: (i) Corrections due to
modes with l * 3 which are excited by higher order tidal
tensors Eijk; . . . . The l ! 3 correction to E"!#, computed
using the above methods in the low frequency limit, is
smaller than the l ! 2 contribution by a factor of
65k3R2="45k2r2#, where k2, k3 are apsidal constants. For
Newtonian polytropes we have k2 ! 0:26, k3 ! 0:106 [8],
and the ratio is 0:58"R=r#2 ! 0:04"R=15 km#2. (ii) To as-
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Mass Ejection from NS 
Mergers

1.Dynamical Ejecta


• Tidal ejecta


• Shock heated ejecta 


2.Disk ejecta            

Bauswein et al. ’13



Nucleosynthesis Depends 
on Ye
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How does Ye get set?



Tidal Ejecta
• Material squeezed 

through the outer 
Lagrange points during 
merger 


• Material is not shocked 
and likely undergoes few 
weak reactions 


• Electron fraction 
distribution essentially 
that of the progenitor NS

Robust r-process in neutron star mergers 1943

Figure 1. Sensitivity to mass ratio: shown are density cuts [(600 km × 600 km), colour-coded is the logarithm of density in cgs units] of a 1.2–1.4 M⊙ (t =
13.9 ms), a 1.4–1.4 M⊙ (t = 13.4 ms) and a 2.0–1.4 M⊙ (t = 15.0 ms) merger.

Figure 2. The ejecta come from two different regions (left and middle): a hot interaction region between the stars where matter is ejected by hydrodynamic
effects and a colder region that is flung out by tidal torques. The fraction of the latter material increases with the asymmetry in the stellar masses (left: 1.4 +
1.4 M⊙, right: 1.8 + 1.4 M⊙). Right: volume rendering of the Ye distribution (1.4 + 1.2 M⊙ at t = 8.09 ms); only matter below the orbital plane is shown.

Figure 3. Left-hand panel: distribution of Ye in the selected subset of ejected particles in all ns2 and nsbh simulations, binned by mass. The inset shows how
Ye is correlated with the initial density in each particle before the merger. Majority of points on the Ye–ρ diagram trace the ns composition in the layer below
the crust, where the Ye(ρ) reaches minimum. As a consequence, Ye in the ejecta is narrowly distributed around Ye ∼ 0.04. Right-hand panel: fit of the ejected
mass normalized by the total mass of the binary as a function of the asymmetry parameter η (see the main text for definition). Coefficients of the fit are A =
0.0125, B = 0.015, C = 0.0083 and σ = 0.0056. The arrows indicate the lower limits on the ejected mass for the three simulations in which the secondary is
still not fully disrupted.

C⃝ 2012 The Authors, MNRAS 426, 1940–1949
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/426/3/1940/988474
by guest
on 13 May 2018

Sn,(A,Z) = m(A,Z) +mn �m(A+1,Z) (15)

YZ =

X

iwhereZi=Z

Yi (16)

3↵ !12 C ! ... (17)

2↵+ n !9 Be
9Be+ ↵ ! n+

12 C ! ... (18)

µe� + µp = µn (19)

Rate Equations:

˙Y(A,Z) = nbh�vin+(A�1,Z)YnY(A�1,Z) � ��(A,Z)Y(A,Z)

�nbh�vin+(A,Z)YnY(A,Z) + ��(A+1,Z)Y(A+1,Z)

+���(A,Z�1)Y(A,Z�1) � ���(A,Z)Y(A,Z)

˙YZ =

X

A

���(A,Z�1)Y(A,Z�1) � ���(A,Z)Y(A,Z) (20)

Nuclear Statistical Equilibrium:

µ(A,Z) = (A� Z)µn + Zµp (21)

Y(A,Z)(nb, Ye, T ) =

G(A,Z)

2

A
nA�1
b Y N

n Y Z
p

✓
mA,Z

mN
n mZ

p

◆3/2✓
2⇡~2c2

T

◆3(A�1)/2

exp[BE(A,Z)/T ]

⇡
A3/2G(A,Z)

2

A

✓
nb

nQ

◆A�1

Y N
n Y Z

p exp[BE(A,Z)/T ]

Y(A,Z) ⇡
G(A,Z)A

3/2

2

A

✓
nb

nQ

◆A�1

Y N
n Y Z

p exp[BE(A,Z)/T ]

BE(A,Z) = (A� Z)mn + Zmp �m(A,Z) (22)

nQ =

✓
mnT

2⇡~2c2

◆3/2

(23)

2

Electron fraction set by beta equilibrium of 
cold NS:

Predicts Ye<0.1 for most of the material

from Korobkin et al. (2012)



Changing Ye for the  
r-process

Evolution of the electron fraction is governed by
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Changing Ye for the  
r-process
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• Under degenerate 
conditions, electron 
capture dominates and 
expect small Ye


• Increase temperature, 
lift degeneracy, produce 
pairs (as long as T > 
me), positron and 
electron capture rates 
are similar and Ye,eq~0.5

Changing Ye with electrons
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Evolution of the electron fraction is governed by

Setting Ye by neutrinos

Y
(A,Z)

⇡
G

(A,Z)

A3/2

2

A

✓
nb

nQ

◆A�1

Y N
n Y Z

p exp[BE
(A,Z)

/T ]

BE
(A,Z)

= (A� Z)mn + Zmp �m
(A,Z)

(23)

nQ =

✓
mnT

2⇡~2c2

◆
3/2

(24)

Ye =
X

i

ZiYi (25)

1 =

X

i

AiYi (26)

Y
(A,Z)

= Y
(A,Z)

(nb, Ye, T ) (27)

⌧d =

✓
nb

ṅb
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Weak Interactions in NS Mergers

Figure 4: Contour plot with increasing entropy from 2.0 - 50.0 kB/baryon on the y-axis, and in-
creasing luminosity from 1.e51 - 1.e54 ergs/s on the x-axis. t = 3.0 ms. At low entropy and
luminosity, Y

e

stays at a low value of 0.06. Future research may investigate why the lowest Y

e

values occur at the lowest neutrino luminosity, but not the lowest entropy. At about an entropy
of 40.0 kB/baryon, neutrino luminosity must be greater than 1.e52 ergs/s in order to affect the Y

e

.
While high luminosities still affect Y

e

for the chosen range of values for entropy, at a high enough
luminosity, Y

e

is almost completely insensitive to changes in entropy. This luminosity is around
5.e52 ergs/s. Although this contour plot encompasses a wide range of electron abundance values,
previous research has shown that a successful r-process can typically only occur with a final Y

e

value less than 0.25. Thus, the creation of heavy elements in BNSMs is always sensitive to both
entropy and neutrino luminosity.

It is important to note that the values at which neutrino luminosity or entropy dominates is de-
pendent on the dynamical time scale of the ejecta, t. t describes the time it takes for the ejecta
to expand away from the center of the collision. As t decreases, the ejecta becomes rapidly less
dense, and all neutrino interactions have less time to interact with nucleons and push up Y

e

.
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distribution at ✓ = 45� is a numerical artefact generated by our Cartesian simulation grid. MNRAS 000, 000–000 (0000)

No weak 
reacs

nu reabsorb 

Only e and  
p cap

10 D. Radice et al.

0.08 0.16 0.24 0.32 0.40

Ye

10

�3

10

�2

10

�1

10

0

M
/M

ej

HY RP7.5

LK RP7.5

M0 RP7.5

0.08 0.16 0.24 0.32 0.40

Ye

HY RP10

LK RP10

M0 RP10

0.08 0.16 0.24 0.32 0.40

Ye

HY QC

LK QC

M0 QC

Figure 7. Electron fraction (top row), specific entropy per baryon (second row), asymptotic velocity (third row), and angular distribution
(bottom row) of the ejecta. ✓ is the angle from the orbital plane. The first, second, and third columns show results from models RP7.5,
RP10, and QC respectively. For each configuration we consider three di↵erent levels of microphysical description: pure hydrodynamics
(HY), neutrino cooling (LK), or neutrino cooling and heating (M0). The histograms are computed from the mass fraction of the matter
crossing a spherical surface at radius r = 200 M� ' 295 km with positive specific energy (i.e., with u

t

6 �1). The bump in the angular
distribution at ✓ = 45� is a numerical artefact generated by our Cartesian simulation grid. MNRAS 000, 000–000 (0000)

Weak Interactions in the 
Dynamical Ejecta

• Shock heating lifts 
electron degeneracy and 
allows for pair capture, 
increasing Ye by positron 
capture 


• Additionally, neutrino 
capture alters Ye 


• Neutrino luminosities and 
average energies fairly 
similar  



Weak Interactions in the 
Dynamical Ejecta

• Nevertheless, still 
produce quite a bit of 
material with Ye<0.25 so 
second and third peak still 
produced 


• Weak interactions have a 
significant impact on the 
amount of first peak 
production

from Radice et al. (2016)
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Figure 8. Angular distribution (upper half of each panel) and composition (lower half of each panel) of the ejecta for the LK QC (upper
panel) and M0 QC (lower panel) simulations as a function of time. The data is collected on a coordinate sphere at radius r = 200 M� '
295 km and only considers the unbound part of the outflow (i.e., with u

t

6 �1). The gray shaded areas refer to times/angles for which
we do not measure any outflow of unbound matter (i.e., where u

t

> �1). The ejection event is of very short duration and the outflow
is confined within a broad ⇠ 60� angle from the equator. The material at low altitudes is typically more neutron rich than at higher
altitudes, suggesting a di↵erent ejection mechanisms for the di↵erent components of the outflow.
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elements with 63 6 A 6 209. For each configuration we consider three di↵erent levels of microphysical description (pure hydrodynamics,
HY or leakage with only cooling, LK, or with heating/absorption included, M0). The abundance pattern for elements with A & 120 is very
robust and in overall good agreement with the Solar r-process abundances taken from Arlandini et al. (1999).
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Figure 4. Final trajectory-averaged abundances as a function
of mass number, scaled by the total ejecta mass, for all models
with non-zero viscosity. The observed solar r-process abundances
(Arnould et al. 2007) are scaled to match the second peak of the
HMNS models at A = 130 (none of the abundances from our
models have been scaled).

outflow, and then they are ejected again almost immediately.
This creates a spike in their density profile that results in sig-
nificant heating, as evidenced by the fact that they all have
T > 5 GK at t ⇠ 2 s. However, before this late-time heating
occurs, r-process nucleosynthesis has already taken place in
these trajectories, and all free neutrons have been captured
onto seed nuclei. Thus, the composition before the heating
spike consists of heavy elements with �-decay half-lives of
milliseconds to seconds. These elements decay and raise the
overall electron fraction of the material to Ye ⇠ 0.38� 0.40,
which is the characteristic Ye at 1� 3 seconds after neutron
exhaustion for the r-process, for a wide range of initial Ye.
The late-time heating then simply pushes the material back
into NSE, but the electron fraction remains unchanged. The
resulting entropy depends on the amount of heating received
by each trajectory, as determined by how far the material
falls back into the disk. This class of trajectories therefore
ends up with electron fractions Ye,5GK

⇠ 0.38 � 0.40 and
nucleosynthesis start times of t

5GK

⇠ 2 s, with uncorrelated
entropies.

3.4 Nucleosynthesis

3.4.1 Final abundances

The mass-averaged composition of the ejecta for all mod-
els with non-zero viscosity is shown in Figure 4. The abun-
dances are multiplied by the total ejecta mass to empha-
size their relative contributions to the di↵erent r-process
regions. Models H000 and H010 (prompt non-spinning BH
and shortest-lived HMNS, respectively) agree most closely
with the Solar System r-process abundances (Arnould et al.
2007), which have been scaled to match the second peak at
A = 130 (the abundances from our models have not been
scaled). The abundances around the third r-process peak in
these two models approach the solar values, whereas in all
other models production of the third peak is too low com-
pared to solar. H000 and H010 also have the best agreement

with the solar rare-earth peak around A ⇠ 165. While these
two models under-produce the first r-process peak (A ⇠ 80),
they agree rather well with the feature around A ⇠ 100, in
contrast to all other models which over-produce it.

While the good agreement between models H000/H010
and the solar r-process abundances could be taken as an in-
dication of short HMNSs lifetimes being more common, one
has to keep in mind that Figure 4 assumes that the entire
second solar r-process peak is due to the disk outflow. Other
sources such as the dynamical ejecta from NSNS/NSBH
mergers and core-collapse supernovae can also produce sig-
nificant amounts of r-process elements. The expected abun-
dance patterns are weighted toward the third peak for the
dynamical ejecta (e.g., Goriely et al. 2011; Wanajo et al.
2014; Roberts et al. 2017) and toward the first peak for
core-collapse supernovae (e.g., Wanajo 2013; Shibagaki et al.
2016; Vlasov et al. 2017). The solar r-process abundance
is thus the outcome of the contribution from each source
weighted by their rate and yield per event.

In all models, the third peak is shifted to slightly
higher mass numbers, which is a well-known shortcoming
of the FRDM mass model (e.g., Mendoza-Temis et al. 2015;
Mumpower et al. 2016). We also see an abundance spike at
A = 132 in all models. This spike is due to some trajec-
tories experiencing late-time heating that photodissociates
neutrons from synthesized heavy elements. This results in
additional neutron capture and a pile up of material at the
doubly magic nucleus 132Sn (N = 82 and Z = 50). Wu
et al. (2016) also observed this phenomenon and described
it in detail.

The models with longer HMNS lifetimes have less
neutron-rich ejecta (Figure 2) and hence synthesize a greater
fraction of first peak material. Once the HMNS lifetime is
longer than 100 ms, the first peak (70 6 A 6 90) is over-
produced with respect to the solar values, when the abun-
dances are normalized to the second peak. Again, we em-
phasize that the r-process yield from disk outflows is com-
plementary to that from the dynamical ejecta, which tends
to produce more neutron-rich nuclei.

We quantify the relative contribution of each model to
the di↵erent regions of the r-process distribution by comput-
ing average abundances around the peaks and normalizing
them to the solar values. The abundance of the second peak
Y
2nd

is computed as the sum of the abundances in the range
125 6 A 6 135, excluding A = 132 to avoid the spike at
that mass number. For the first peak abundance Y

1st

, we
use the sum of abundances in the range 70 6 A 6 90. For
the rare-earth peak Y

RE

, we use 160 6 A 6 166 and for the
third peak we use 186 6 A 6 203. The quantity [Y

1st

/Y
2nd

]
shown in Table 2 is defined as

[Y
1st

/Y
2nd

] = log
10

Y
1st

Y
2nd

� log
10

Y
1st,�

Y
2nd,�

, (5)

where Y
1st,� and Y

2nd,� are the abundances of the third
and second peak as observed in the solar system, respec-
tively. The same procedure is used to compute [Y

RE

/Y
2nd

]
and [Y

1st

/Y
2nd

]. Using the solar r-process abundances from
Arnould et al. (2007), we find log Y

1st,�/Y
2nd,� = +1.3,

log Y
RE,�/Y

2nd,� = �1.1, and log Y
3rd,�/Y2nd,� = �0.42,

which we use to normalize the values shown in Table 2.
The di↵erent peak ratios shown in Table 2 quantify the

trends apparent in Figure 4. For models H000 and H010,

c� 2017 RAS, MNRAS 000, 1–18

• Material in the 
remnant disk also 
experiences a large 
number of weak 
interactions


• Broad range of Ye


• Produce 1st, 2nd, and 
3rd peak



Decay to Stability

•Beta decays, alpha decays, and fission back towards stability


•Decays move to longer and longer timescales as one gets closer to stability since 
beta-decay Q values decrease closer to stability


• These decays release energy into the fluid, relevant to kilonovae (see Brian’s lecture)

The Astrophysical Journal Letters, 736:L21 (5pp), 2011 July 20 Roberts et al.
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Figure 2. Top: energy deposition rate from nuclear decay (including neutrino
losses) as a function of time for various Lagrangian trajectories from the SPH
simulations. These are shown for the BH–NS merger, but are representative of
the NS–NS mergers as well. The trajectories are color coded by their density one
day after the explosion. The gray lines show the heating rate from single reactions
that contribute significantly after 0.1 days for a single trajectory. Bottom: final
abundances as a function of nuclear mass for the same trajectories.
(A color version of this figure is available in the online journal.)

we ran calculations varying the initial temperature down T9 =
0.2, and found that the nuclear heating rate was not substantially
altered.

Figure 2 shows the total heating rate and final abundance
distribution for a selection of fluid elements. Similar to Metzger
et al. (2010b), we find that the late time heating rate is insensitive
to the exact initial conditions and is statistical in nature, as
predicted by Li & Paczyński (1998). One day after disruption,
the top five beta-decays contributing to the heating are 125Sb,
126Sb, 132I, 127Te, and 197Pt.

2.3. Radiative Transfer

We calculated the optical emission of the mergers using the
SEDONA three-dimensional time-dependent LTE Monte Carlo
radiative transfer code (Kasen et al. 2006). The output of the
hydrodynamic simulations at the time of homology was mapped
onto a Cartesian grid for post-processing by the transport code.
A global nuclear heating rate based on a fit to the nuclear
network calculations was used. We accounted approximately for
neutrino losses by assuming 75% of the nuclear network energy
generation was deposited in the material (Metzger et al. 2010b).
Of the energy that is left, we assumed 50% was deposited as
gamma-rays from decays while the other 50% was deposited
thermally.

The opacity of r-process material at the relevant densities and
temperatures is not well known. The main contribution to the
opacity is presumably due to millions of atomic lines, which
are Doppler broadened by the high differential velocities in the
ejecta. Unfortunately, complete atomic line lists for these high-
Z species are not available. Given the uncertainty, we adopted
here a constant gray opacity of κ = 0.1 cm2 g−1 which is
characteristic of the line expansion opacity from iron group
elements (e.g., Kasen & Woosley 2007). This is in contrast to the
approach of Metzger et al. (2010b), who used oscillator strengths
for pure Fe with ionization potentials from Pb. Considering

that neither approach will yield accurate spectral information,
we feel that our simple gray opacity scheme is a reasonable
approximation.

We calculated the spatial distribution of gamma-ray heating
by following the transport of gamma-rays and determining the
fraction of their energy thermalized by Compton scattering and
photoelectric absorption. Since the dominant Compton opacity
has only a weak wavelength dependence, the exact spectrum
of gamma-ray emission from the radioactive source does not
strongly affect the results. We therefore simply assumed all
gamma-rays were emitted at 1 MeV. We found that the gamma-
ray thermalization rate was greater than 80% for the first two
days after disruption.

3. DETAILED PROPERTIES OF THE
ELECTROMAGNETIC COUNTERPARTS

The top panel of Figure 3 shows the R-band light curves for
the four models in Table 1. As expected from the simple models
of Li & Paczyński (1998), the peak luminosity correlates with
the total ejected mass of radioactive elements and the time of
the peak scales inversely with mass and velocity. Because the
total mass ejected in these mergers is not very sensitive to q, the
nature of the merger cannot easily be determined solely from
the peak time or luminosity. Additionally, the peak luminosity
varies with viewing angle within a single model by a factor of
∼3, which is as large as the variation in the angle-averaged peak
luminosity between models. This further complicates our ability
to distinguish between different mass ratios and progenitor
models based only on luminosities.5

Still, it may be possible to determine if one or two tails
are present based on the color evolution of the light curves.
In NS–NS mergers which produce two tails, the luminos-
ity of the transient will be given by the sum of the lumi-
nosities of the tails, each of which can be approximated as
a Li & Paczyński (1998) expanding sphere. We denote here
the heavier and lighter tails with the subscript 1 and 2, re-
spectively. Li & Paczyński (1998) find that at late times,
the evolution of the effective temperature is given by Teff ≈
4.7×103 K (M/0.01 M⊙)1/4(c/v)3/4(day/t)3/4(f/3×10−5)1/4.
The ratio of the effective temperatures in the tails at late times
is then

Teff,1

Teff,2
≈

(
M1

M2

)1/4 (
v2

v1

)3/4

. (1)

Significant variation in color from the single tail case is then
expected only for a considerable difference between velocities.
In this case, tail 2 will shift the total light blueward if it
makes an important contribution to the total luminosity at any
time. The time of peak luminosity for a single tail is given
by tm ≈ 1 day (M/0.01 M⊙)1/2(3v/c)1/2. If the velocity of
the second tail is much lower, it contributes more to the total
luminosity at late times and the light will be bluer compared to
the more massive tail emitting radiation alone.

In our detailed models, the velocity difference between the
tails is not significant enough compared to the mass difference
between the tails in either of the asymmetric NS–NS merger
models for the tails to be easily discernible in their color
evolution, as shown in Figure 3. There is thus no significant
distinguishing characteristic between ejecta geometries in their

5 We also do not observe the non-smooth structures seen in the light curves of
Metzger et al. (2010b), which are due to their use of approximate non-gray
opacities.
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Radioactivity powered transients





Opacity Dependence on the 
Composition

• Lanthanides and Actinides 
provide a larger opacity 
than iron peak elements 


• Makes kilonova redder and 
longer 


• Gives indication that heavy 
r-process elements might 
have been produced

4 M. Tanaka et al.
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Figure 2. Planck mean opacities for all the elements. The opacities are calculated by assuming ρ = 1× 10−13 g cm−3, and
t = 1 day after the merger. Blue and red lines present the opacities for T = 5, 000 and 10,000 K, respectively.

bution of the energy levels becomes wider for higher Z

in a given shell. (2) At the same time, the number of
states is the largest for the half-closed shell since it gives
the highest complexity, i.e., the number of combinations
formed from different quantum numbers is the largest.
For the case of lanthanides (Z = 57 − 71), the total

number of levels is the largest for Eu or Gd which have
half closed 4f -shells, depending on the ionization states.
But the distribution of the energy levels is pushed up as
Z increases, and thus, the number of low-lying levels
is not necessarily higher than that of other lanthanide
elements. This is the reason why the opacities of these
complex elements are not always higher than those of
the other lanthanides (Section 3).

3. OPACITY

In a typical timescale of kilonova emission (t ∼> 1
day), bound-bound transitions play the dominant role
for the opacities in near ultraviolet, optical, and in-
frared wavelengths (Kasen et al. 2013; Barnes & Kasen
2013; Tanaka & Hotokezaka 2013). To evaluate the
bound-bound opacities in rapidly expanding medium,
such as supernova or neutron star merger ejecta, ex-
pansion opacities are commonly used (Karp et al. 1977;
Eastman & Pinto 1993; Kasen et al. 2006). In the ho-
mologous expansion, the expansion opacity is expressed
by

κexp(λ) =
1

ctρ

∑

l

λl

∆λ
(1− e−τl), (1)

where summation is taken over all the transitions within
the wavelength bin ∆λ in radiative transfer simulations.
Here τl is the Sobolev optical depth for each bound-

bound transition;

τl =
πe2

mec
flntλl, (2)

where n is the number density in a lower level of the
transition and fl and λl are the oscillator strength and
transition wavelength, respectively. Whenever not ex-
plicitly mentioned, the expansion opacities shown in this
paper are evaluated at t = 1 day after the merger by as-
suming density of ρ = 1×10−13 g cm−3, which is typical
for the ejecta mass of Mej ∼ 10−2M⊙ and the ejecta ve-
locity of v ∼ 0.1c.
Our simulations assume local thermodynamic equilib-

rium (LTE), and ionization states are calculated by solv-
ing Saha equation. Population of excited states follow
the Boltzmann distribution. By the exponential depen-
dence of the population of excited states (n ∝ e−E/kT ),
bound-bound transitions from lower energy levels have
much higher contributions to the total opacities.
Figure 2 shows the overview of the opacity as a func-

tion of atomic number: the Plank mean opacities are
shown for T = 5, 000 and 10,000 K for all the elements.
In the following sections, properties of the opacities are
discussed for each open shell of the elements.

3.1. f-shell elements

Open f -shell elements, lanthanides and actinides,
have larger opacities than the elements with other open
shells (Kasen et al. 2013; Tanaka & Hotokezaka 2013;
Fontes et al. 2017; Tanaka et al. 2018; Wollaeger et al.
2018; Fontes et al. 2019). Due to the large number of
energy levels with small energy spacing, the opacities

from Tanaka et al. (2019) 
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
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Ā

fi
n

0.0 0.1 0.2 0.3 0.4
5

4

3

2

1

0

Ye

lo
g
X

i,
N

f,
Ā
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.
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Figure 3. Results of the high-resolution Ye runs. The lanthanide and actinide mass fractions, XLa and XAc, and their sum, XLa+Ac,
are fairly constant up to some critical value of Ye in most cases because of fission cycling. The neutron abundance Xn at 10minutes (the
mean lifetime of a free neutron) is an indicator for a neutron-rich freeze-out, which occurs at high initial entropies and short expansion
timescales, where the neutrons do not have time to capture on the seed nuclei. The heating rate M✏ at 1 day with M = 10�2 M� is fairly
insensitive to Ye, except at high electron fractions (Ye & 0.4) where some individual nuclides start to dominate the heating. The estimated
final average mass number Āfin falls o↵ monotonically with Ye in all cases except s = 100 kB baryon�1, where it rebounds at Ye very
close to 0.5. There, the number of seed nuclei decreases drastically because ↵-particles are initially produced in higher quantities, which
increases the neutron-to-seed ratio. In those cases, the predicted number of fission cycles Nf is artificially increased at high Ye, because of
production of seed nuclei by the triple-↵ process. Where equation ?? accurately predicts the number of fission cycles, Nf falls o↵ rapidly
with Ye and the point where it becomes zero is correlated with the actinide turno↵, because actinides are at the low end of the fissionable
material mass range. Note that we plot Āfin and Nf on linear scales rather than log scales as all the other quantities. Also, we added a
negative o↵set of 5 to both Āfin and Nf and we scaled Āfin by 1/100 so that they fit onto our left vertical axis.



Kilonova Models and 
Observations

Figure 1: Photometry of SSS17a compared to fitted kilonova models. A: UV to NIR pho-
tometry of SSS17a from 10.9 hours after the BNS merger to +18.5 days (11). Overplotted
are our best-fitting kilonova model in each band. B: Residuals (in magnitudes) between each
photometry measurement and our best-fitting model. C: The integrated luminosity of our best-
fitting kilonova model compared with the total integrated luminosity of SSS17a (11). We also
show the luminosity of the individual blue and red components of our kilonova model. D: The
derived temperature of our kilonova model compared with the temperature derived by fitting a
blackbody SED to each epoch (11).
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