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Elastic scattering

traditionally used to
extract optical potentials,

rms radii, density
distributions.

[Lapoux et al, PRC 66 (02) 034608]
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Inelastic scattering
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One-particle transfer

120Sn
40Ca

41Ca121Snshape: angular 
momentum. 

populates states with
strong single-particle content

L=3 L=1 L=2 L=1

magnitude: spectroscopic
factor (single-particle
strength). 

Brown et al. Nucl. Phys. A 225 (1974) 267
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2-neutron transfer and reactions

a

A

A B

b

b

Reaction A + a −→ (a− 2) + (A + 2).

Measure of the pairing correlations between the transferred nucleons.

Need to correctly account for the correlated wavefunction.
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Delocalization of the pair transfer process

ξ≈36fm

(a)

(A+2)

∞ neutron matter
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Cooper pair
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Let’s remember the Born series

|φ〉 = |φ0〉+ G0V |φ〉
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Let’s remember the Born series
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Let’s remember the Born series
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Let’s remember the Born series

|φ〉 = |φ0〉+ G0Vφ0 + G0VG0Vφ0 + G0VG0VG0Vφ0 + . . .
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Two-nucleon transfer: stick to second order

In order to account for the successive transfer of two nucleons, we stick to
2nd order, A + a → (A + 1) + (a− 1) → (A + 2) + (a− 2)

|φ〉 = |φ0〉+ G0Vφ0 + G0VG0Vφ0

A+a

(A+2)+(a-2)

(A+1)+(a-1)

(A+2)+(a-2)

A+a A+a

V → one-nucleon transfer

G0 → Green’s function of each one of the many intermediate states
(A + 1) + (a− 1)
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Reaction and structure models

Structure:

Φi (r1, σ1, r2, σ2) =
∑
ji

Bji

[
ψji (r1, σ1)ψji (r2, σ2)

]0
0

Φf (r1, σ1, r2, σ2) =
∑
jf

Bjf

[
ψjf (r1, σ1)ψjf (r2, σ2)

]0
0

mean field potentials
radial wave functions
uji (r)

radial wave functions
ujf (r)

Reaction:

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
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Introducing T (1)(ji , jf ), T
(2)
succ(ji , jf ) and T

(2)
NO(ji , jf )

very schematically, the first order (simultaneous) contribution is

T (1) = 〈β|V |α〉,

while the second order contribution can be separated in a successive and a
non-orthogonality term

T (2) = T
(2)
succ + T

(2)
NO

=
∑
γ

〈β|V |γ〉G 〈γ|V |α〉 −
∑
γ

〈β|γ〉〈γ|V |α〉.

If we sum over a complete basis of intermediate states γ, we can apply the

closure condition and T
(2)
NO cancels T (1)

the transition potential being single particle, two-nucleon transfer is a
second order process.
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Two particle transfer in 2–step DWBA

Potel et al., PRL 107 092501 (2011)
Potel et al., PRL 105 172502 (2010)

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)

Simultaneous transfer

T (1)(ji , jf ) = 2
∑
σ1σ2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0 χ

(−)∗
bB (rbB)

× v(rb1)[Ψji (rb1, σ1)Ψji (rb2, σ2)]00χ
(+)
aA (raA)
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Two particle transfer in 2–step DWBA

Potel et al., PRL 107 092501 (2011)
Potel et al., PRL 105 172502 (2010)

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)
Successive transfer

T
(2)
succ(ji , jf ) = 2

∑
K ,M

∑
σ1σ2
σ′
1σ

′
2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0

× χ(−)∗
bB (rbB)v(rb1)[Ψjf (rA2, σ2)Ψji (rb1, σ1)]KM

×
∫

dr′fFdr
′
b1dr

′
A2G (rfF , r

′
fF )[Ψjf (r′A2, σ

′
2)Ψji (r′b1, σ

′
1)]KM

× 2µfF
~2

v(r′f 2)[Ψji (r′b2, σ
′
2)Ψji (r′b1, σ

′
1)]00χ

(+)
aA (r′aA)
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Two particle transfer in 2–step DWBA

Potel et al., PRL 107 092501 (2011)
Potel et al., PRL 105 172502 (2010)

T2NT =
∑
jf ji

Bjf Bji

(
T (1)(ji , jf ) + T

(2)
succ(ji , jf )− T

(2)
NO(ji , jf )

)

Non–orthogonality term

T
(2)
NO(ji , jf ) = 2

∑
K ,M

∑
σ1σ2
σ′
1σ

′
2

∫
drfFdrb1drA2[Ψjf (rA1, σ1)Ψjf (rA2, σ2)]0∗0

× χ(−)∗
bB (rbB)v(rb1)[Ψjf (rA2, σ2)Ψji (rb1, σ1)]KM

×
∫

dr′b1dr
′
A2[Ψjf (r′A2, σ

′
2)Ψji (r′b1, σ

′
1)]KM

× [Ψji (r′b2, σ
′
2)Ψji (r′b1, σ

′
1)]00χ

(+)
aA (r′aA)
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Contributions to the 112Sn(p,t)110 total cross section
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Transfer driven by single-particle potential (mean field) → essentially a
successive process!
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Contributions to the 112Sn(p,t)110 total cross section
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Contributions to the 112Sn(p,t)110 total cross section
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Contributions to the 112Sn(p,t)110 total cross section
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Probing pairing with 2–transfer: 112Sn(p,t)110Sn @ 26 MeV
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 experiment 

pure (d
5/2

)2 configuration

Shell Model
BCS

112Sn(p,t)110Sn, E
lab

=26 MeV

enhancement factor with
respect to the transfer of
uncorrelated neutrons:
ε = 20.6

Experimental data and shell model wavefunction from Guazzoni et al.
PRC 74 054605 (2006)

experiment very well reproduced with mean field (BCS) wavefunctions
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Examples of calculations
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good results obtained for halo nuclei,
population of excited states,
superfluid nuclei,
normal nuclei (pairing vibrations),
heavy ion reactions...
Potel et al., Rep. Prog. Phys. 76
(2013) 106301

Absolute cross sections reproduced
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Extracting the structure information: a standard approach

many-body 
Hamiltonian

many-body wfs 
and energies

 "spectroscopic
 amplitudes"

r s-p wfs  
interactions 

Ec

R

scattering wfs  
optical potentials  

STRUCTURE REACTIONS

σ=Si
2σ

Uc(R)

R
r

Factorization of structure and reactions.

Can suffer from inconsistency between the two schemes.

Extracted spectroscopic factor S2
i = σ/σ̃ problematic.
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(d , p) reactions: a unified approach

1 Describe the structure of the 2-body subsystems in some given
framework of choice.

2 Employ the same quantum many-body methods to work out the
interactions UAn,UAp,Upn (in general, non-local and
energy-dependent).

3 Write down the resulting 3–body Hamiltonian H.
4 Obtain cross sections from H using controlled approximations.

3–body Hamiltonian

H = T + UAn(rn, r
′
n,En, Jn, πn) + UAp(rp, r

′
p,Ep, Jp, πp)

+ Upn(rpn, r
′
pn,Epn, Jpn, πpn)

Disclaimer

Still not the end of the story! 3–body forces UAnp not taken into account
at this stage.
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(d , p) reaction as a 2-step process

p

n

d

A A

non elastic breakup
elastic breakup

p

n

A

G

p
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to detector

step1

step2

breakup

propagation of n in the field of A

n
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UAn potential and neutron states
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scatteringxandxresonances

broadxsingle-particle

Mahaux,xBortignon,xBrogliaxandxDassoxPhys.xRep.x120x919858x1x
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Dispersive Optical Model (DOM): Calcium isotopes
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GP et al., Eur. Phys. J. A 53 (2017) 178.

DOM used to compute (d , p) cross sections on Ca isotopes.

Both bound and continuum neutron states described.

DOM can be extrapolated to unknown territory (60Ca).
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Dispersive Optical Model (DOM): Calcium isotopes
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Absolute transfer cross sections without spectroscopic factors.
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Nuclear Field Theory (NFT): 11Be, parity inversion close to
the dripline
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structure (energies, widths) reproduced
within an EFT-like framework (NFT)

self energies and Green's functions obtained
within the same framework

G(E,l,j)=G0(E)
      +G0(E)Σ(E,l,j)G(E,l,j)

Σ(E,l,j)= + + ...
l,j

l,j l,j

l,j

l',j'
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Nuclear Field Theory (NFT): 11Be, parity inversion close to
the dripline

Oak Ridge, June 28 2019 slide 25/32



Nuclear Field Theory (NFT): 11Be, parity inversion close to
the dripline

Oak Ridge, June 28 2019 slide 25/32



Nuclear Field Theory (NFT): 11Be, parity inversion close to
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Coupled-Cluster (CC): Ca isotopes

(Eexp)

-2.20

-3.88

-4.35

-4.56

(Eexp)

structure calculated within
ab initio coupled cluster
framework by J. Rotureau (MSU)

remarkable agreement with 
experimental data

coupled cluster+(d,p)+
continuum spectroscopy

powerful tool for exotic
medium-mass nuclei

Eexp=-8.36 MeV

Eexp=-5.15 MeV
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Coupled-Cluster (CC): Ca isotopes

structure calculated within
ab initio coupled cluster
framework by J. Rotureau (MSU)

Rotureau, GP, Li, Nunes Submitted to PRL
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Eexp=-8.36 MeV

Eexp=-5.15 MeV

(Eexp)

(Eexp)
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