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Nuclear reactions

Nuclear reactions are processes in which two nuclear species collide,
allowing them to exchange matter, energy, and momentum.
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Why do we care? Nuclear reactions applied
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Why do we care? Nuclear reactions as an experimental tool
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transfer reactions probe nuclear response
to the addition of a nucleon

a variety of observables provide rich
information about nuclear structure:

angular differential cross section
absolute value
position
width (when in the continuum)
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Looking at things

source
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reaction product
detector

data analysis
theoretical
interpretation
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Reaction formalism, between structure and experiment
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Time-dependent vs time-independent description

Time-dependent description → time-dependent Schrödinger equation

−i~∂φ(r , t)

∂t
= H(r , t)φ(r , t)
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Time-dependent vs time-independent description

Time-dependent description → time-dependent Schrödinger equation

−i~∂φ(r , t)

∂t
= H(r , t)φ(r , t)
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Time-dependent vs time-independent description

Time-independent description → time-independent Schrödinger equation

H(r)φ(r) = Eφ(r)
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Time-dependent vs time-independent description

Time-independent description → time-independent Schrödinger equation

H(r)φ(r) = Eφ(r)
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Compound and direct reactions

high level
density

ground state 

Sn

discrete low-lying
states
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Compound and direct reactions

transfer, inelastic
excitation, knockout

fusion, fission,
compound nucleus
reactions, giant resonances

Oak Ridge, June 26 2019 slide 10/24



Compound and direct reactions

individual quantum states
level densities
(statistical treatment)
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2-body Scrhödinger equation in 3D
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our mission: 
find the cross section!

Projectile

(
− ~2

2µ

∂2

∂r2
+

~2`(`+ 1)

2µr2
+ V (r)− E

)
φ`(r) = 0, φ(r) =

∑
`

φ`(r),

where ~` is the angular momentum, related to the classical impact
parameter: ` = kb, where k is the linear momentum. If V (r →∞) = 0,

φ(r →∞) = e ikz +
e ikr

r
f (θ)

dσ

dΩ
(θ) = |f (θ)|2 → find scattering amplitude f (θ)!
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Born series

Let’s separate the problem into an easy and a hard to solve part,

H = T + U0(r) + V (r),

where T is the kinetic energy operator, and U0(r) is easy to solve,

(T − U0(r)− E )|φ0〉 = 0.

(T + U0(r)− E )|φ〉 = −V (r)|φ〉

→ |φ〉 = |φ0〉+ lim
η→0

1

E − T − U0 + iη
V |φ〉 = |φ0〉+ G0V |φ〉,

where we have defined the operator

G0 = lim
η→0

1

E − T − U0 + iη

called the Green’s function, a.k.a. propagator.
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(Interlude: the Green’s function)

The Green’s function is a non-local, integral operator

G0|φ〉 ≡
∫

G0(r , r ′)φ(r ′) dr ′,

with

G0(r , r ′) =
1

k

{
χ(r)F (r ′) r < r ′

χ(r ′)F (r) r > r ′

χ and F are two linearly independent solutions of the Hamiltonian T +U0,

(T + U0 − E )χ(r) = 0, (T + U0 − E )F (r) = 0,

with the boundary conditions,

χ(r → 0) = 0, F (r →∞) =
e ikr

r
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Born series

|φ〉 = |φ0〉+ G0V |φ〉
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Born series

|φ〉 = |φ0〉+ G0V (|φ0〉+ G0V |φ〉)
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Born series

|φ〉 = |φ0〉+ G0V (|φ0〉+ G0V [|φ0〉+ G0V |φ〉])
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Born series

|φ〉 = |φ0〉+ G0Vφ0 + G0VG0Vφ0 + G0VG0VG0Vφ0 + . . .
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Born series

|φ〉 = |φ0〉+ G0V |φ0〉

The first order term is known as the first-order Distorted Wave Born
Approximation (DWBA)

|φ〉 ≈ |φ0〉+ G0V |φ0〉.

In this approximation,

φ(r) = φ0(r)+

∫
G0(r , r ′)V (r ′)φ0(r ′) dr ′

= φ0 +
1

k

{
χ(r)

∫
F (r ′)V (r ′)φ0(r ′) dr ′ r < r ′

F (r ′)
∫
χ(r ′)V (r ′)φ0(r ′) dr ′ r > r ′

φ(r →∞) = e ikz +
e ikr

r

∫
χ(r ′)V (r ′)φ0(r ′) dr ′
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Scattering ampitude in DWBA

Remember:

φ(r →∞) = e ikz +
e ikr

r
f (θ).

In first-order DWBA

φ(r →∞) = e ikz +
e ikr

r

∫
χ(r ′)V (r ′)φ0(r ′) dr ′

so, in DWBA, the scattering amplitude (a.k.a T matrix) is

T (θ) ≡ f (θ) =

∫
χ(r ′)V (r ′)φ0(r ′) dr ′ ≡ 〈χ|V |φ0〉

We’re done!
The desired cross section is

dσ

dΩ
(θ) = |T (θ)|2
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Nuclei are composite objects: beyond 2-bodies

R

Target and projectile have internal degrees of freedom ξ ≡ {ξt , ξp}.

H = TR + h(ξ) + V (ξ,R)

(h − ε)φ(ξ) = 0, φ(ξ) = φt(ξt)φp(ξp)

Ψ(ξ,R) =
∑
i

φi (ξ)χi (R)

The index i runs through all the channels. The scattering wavefunction
χi (R) brings to the detector the information that channel i has been
populated. The elastic channel 0 is the only one present as a plane wave,

Ψ(ξ,R →∞) = φ0(ξ)e ik0Rz +
∑
i

e ikiR

R
φi (ξ)fi (θ)
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Example: 2-channel system

Ψ(ξ,R) = φ0(ξ)χ0(R) + φ1(ξ)χ1(R)

with

(h − ε0)φ0(ξ) = 0, (h − ε1)φ1(ξ) = 0.

The Schrödinger equation

(TR + V (ξ,R) + h(ξ)− E )|Ψ〉 = 0

can be projected on channels 0,

〈φ0|(TR + V (ξ,R) + h(ξ)− E )|Ψ〉 = 0

→ (TR + 〈φ0|V |φ0〉+ ε0 − E )χ0(R) = −〈φ0|V |φ1〉χ1(R),

and 1,

〈φ1|(TR + V (ξ,R) + h(ξ)− E )|Ψ〉 = 0

→ (TR + 〈φ1|V |φ1〉+ ε1 − E )χ1(R) = −〈φ1|V |φ0〉χ0(R),
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Coupled equations and optical potential

If we define

Ei = E − εi , Vij(R) = 〈φi |V |φj〉 ≡
∫
φi (ξ)V (ξ,R)φj(ξ) dξ,

we obtain the coupled equations

(TR + V00(R)− E0)χ0(R) = −V01χ1(R),

(TR + V11(R)− E1)χ1(R) = −V10χ0(R).

From the second equation,

χ1(R) = lim
η→0

(E1 − TR − V11 + iη)−1V10χ0(R) = G1V10χ0(R).

We can substitute in the first equation,

(TR + V00(R)− E0)χ0(R) = −V01G1V10χ0(R)
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Coupled equations and optical potential

We can rewrite

(TR + U0(R)− E0)χ0(R) = 0,

where

U0(R) = V00 + V01G1V10

is the optical potential. For an arbitrary number of channels,

(TR + Vii (R)− Ei )χi (R) = −
∑
j 6=i

Vijχj(R),

and the optical potential is

U0(R) = V00 +
∑
i 6=0

V0iGiVi0,

where

Gi = lim
η→0

(Ei − TR − Vii + iη)−1,

is the Green’s function in the channel i .
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Solving the coupled equations: first order DWBA

Let’s compute the cross section for the population of channel c . We’ll do
that assuming that all channels are weakly populated, so the elastic
channel 0 strongly dominates.
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Solving the coupled equations: first order DWBA

1 Get states and interactions (input from structure!),

Vij(R) = 〈φi |V |φj〉 ≡
∫
φi (ξ)V (ξ,R)φj(ξ) dξ,

2 Get the elastic channel,

(TR + V00 − E0)χ0 = −
∑
i 6=0

V0iχi → (TR + V00 − E0)χ0 = 0.

3 Write down channel c ,

(TR + Vcc − Ec)χc = −
∑
i 6=c

Vciχi → (TR + Vcc − Ec)χc = Vc0 χ0

4 Solve using Gc = limη→0(Ec − T − Vcc + iη)

χc(R) = GcVc0 χ0(R) =

∫
Gc(R,R ′)Vc0(R ′)χ0(R ′) dR ′

5 Get the amplitude where the detector is (R →∞),

χc(R →∞) =
ekcR

R

∫
χc(R ′)Vc0(R ′)χ0(R ′) dR ′
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Solving the coupled equations: first order DWBA

We’re done!
Remember that

(TR + Vcc − Ec)χc = 0.

We now have the T matrix,

Tc =

∫
χc(R ′)Vc0(R ′)χ0(R ′) dR ′

=

∫
χc(R ′)φc(ξ)V (R ′, ξ)φ0(ξ)χ0(R ′) dR ′ dξ.

Note the parallel with Fermi’s Golden rule! Now we can write down the
desired cross section,

dσ

dΩ
(θ) = |Tc(θ)|2
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Other approaches: time-dependent methods

In the Time Dependent Hartree Fock (TDHF) method, the
time-dependent Schrödinger equation is solved, with a mean-field
Hamiltonian H,

i~
∂Ψ(t)

∂t
= HΨ(t),

and Ψ(t) is obtained as a function of time.
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Other approaches: coupled-channels methods

The coupled differential equations are solved to all orders, with a limited
number of channels M,

(TR + Vii (R)− Ei )χi (R) = −
M∑
j 6=i

Vijχj(R),

I. Thompson
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Other approaches: microscopic methods

Interacting clusters described with a microscopic Hamiltonian with 2-
and 3-body forces (no-core shell model).

Relative motion described with scattering waves.

Relative motion and coupled to intrinsic dynamics.

computationally expensive: only light ions.

R
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