Nuclear Reactions I: Basics

Grégory Potel Aguilar (FRIB)

Oak Ridge, June 26 2019

Nuclear reactions

Nuclear reactions are processes in which two nuclear species collide, allowing them to exchange matter, energy, and momentum.

Why do we care? Nuclear reactions applied

nuclear reactors

inertial confinement fusion

waste management

stockpile stewardship

reactions of astrophysical interest

Oak Ridge, June 26 2019

slide 3/24

Why do we care? Nuclear reactions as an experimental tool

Looking at things

Reaction formalism, between structure and experiment

$\mathsf{Time-dependent}\ \mathsf{description}\ \rightarrow\ \mathsf{time-dependent}\ \mathsf{Schrödinger}\ \mathsf{equation}$

$$-i\hbar\frac{\partial\phi(r,t)}{\partial t}=H(r,t)\phi(r,t)$$

 $\mathsf{Time-dependent}\ \mathsf{description}\ \to\ \mathsf{time-dependent}\ \mathsf{Schrödinger}\ \mathsf{equation}$

$$-i\hbar\frac{\partial\phi(r,t)}{\partial t} = H(r,t)\phi(r,t)$$

Time-independent description \rightarrow time-independent Schrödinger equation

$$H(r)\phi(r)=E\phi(r)$$

 $\mathsf{Time-independent}\ \mathsf{description}\ \rightarrow\ \mathsf{time-independent}\ \mathsf{Schrödinger}\ \mathsf{equation}$

$$H(r)\phi(r)=E\phi(r)$$

Compound and direct reactions

Compound and direct reactions

2-body Scrhödinger equation in 3D

$$\left(-\frac{\hbar^2}{2\mu}\frac{\partial^2}{\partial r^2}+\frac{\hbar^2\ell(\ell+1)}{2\mu r^2}+V(r)-E\right)\phi_\ell(r)=0,\quad \phi(r)=\sum_\ell\phi_\ell(r),$$

where $\hbar \ell$ is the angular momentum, related to the classical impact parameter: $\ell = kb$, where k is the linear momentum. If $V(r \to \infty) = 0$,

$$\phi(r \to \infty) = e^{ikz} + \frac{e^{ikr}}{r}f(\theta)$$

 $\frac{d\sigma}{d\Omega}(\theta) = |f(\theta)|^2 \rightarrow \text{find scattering amplitude } f(\theta)!$

Oak Ridge, June 26 2019

Let's separate the problem into an easy and a hard to solve part,

$$H=T+U_0(r)+V(r),$$

where T is the kinetic energy operator, and $U_0(r)$ is easy to solve,

$$(T-U_0(r)-E)|\phi_0\rangle=0.$$

$$(T + U_0(r) - E)|\phi\rangle = -V(r)|\phi\rangle$$

 $\rightarrow |\phi\rangle = |\phi_0\rangle + \lim_{\eta \to 0} \frac{1}{E - T - U_0 + i\eta} V|\phi\rangle = |\phi_0\rangle + G_0 V|\phi\rangle,$

where we have defined the operator

$$G_0 = \lim_{\eta \to 0} \frac{1}{E - T - U_0 + i\eta}$$

called the Green's function, a.k.a. propagator.

Oak Ridge, June 26 2019

(Interlude: the Green's function)

The Green's function is a non-local, integral operator

$$G_0 |\phi
angle \equiv \int G_0(r,r') \phi(r') \, dr',$$

with

$$G_0(r,r') = \frac{1}{k} \begin{cases} \chi(r)F(r') & r < r' \\ \chi(r')F(r) & r > r' \end{cases}$$

 χ and F are two linearly independent solutions of the Hamiltonian $T + U_0$,

$$(T + U_0 - E)\chi(r) = 0, \quad (T + U_0 - E)F(r) = 0,$$

with the boundary conditions,

$$\chi(r o 0) = 0, \quad F(r o \infty) = rac{e^{ikr}}{r}$$

$|\phi\rangle = |\phi_0\rangle + G_0 V |\phi\rangle$

$|\phi\rangle = |\phi_0\rangle + G_0 V (|\phi_0\rangle + G_0 V |\phi\rangle)$

Born series

$|\phi\rangle = |\phi_0\rangle + G_0 V (|\phi_0\rangle + G_0 V [|\phi_0\rangle + G_0 V |\phi\rangle])$

$$|\phi\rangle = |\phi_0\rangle + G_0 V |\phi_0\rangle$$

The first order term is known as the first-order Distorted Wave Born Approximation (DWBA)

$$|\phi\rangle \approx |\phi_0\rangle + G_0 V |\phi_0\rangle.$$

In this approximation,

$$\begin{split} \phi(r) &= \phi_0(r) + \int G_0(r,r') V(r') \phi_0(r') \, dr' \\ &= \phi_0 + \frac{1}{k} \begin{cases} \chi(r) \int F(r') V(r') \phi_0(r') \, dr' & r < r' \\ F(r') \int \chi(r') V(r') \phi_0(r') \, dr' & r > r' \end{cases} \end{split}$$

$$\phi(r \to \infty) = e^{ikz} + \frac{e^{ikr}}{r} \int \chi(r') V(r') \phi_0(r') dr'$$

Scattering ampitude in DWBA

Remember:

$$\phi(r \to \infty) = e^{ikz} + \frac{e^{ikr}}{r}f(\theta).$$

In first-order DWBA

$$\phi(r \to \infty) = e^{ikz} + \frac{e^{ikr}}{r} \int \chi(r') V(r') \phi_0(r') dr'$$

so, in DWBA, the scattering amplitude (a.k.a T matrix) is

$$\mathcal{T}(heta)\equiv f(heta)=\int \chi(r')V(r')\phi_0(r')\,dr'\equiv \langle\chi|V|\phi_0
angle$$

We're done!

The desired cross section is

$$rac{d\sigma}{d\Omega}(heta) = |T(heta)|^2$$

Nuclei are composite objects: beyond 2-bodies

Target and projectile have internal degrees of freedom $\xi \equiv \{\xi_t, \xi_p\}$.

$$H = T_R + h(\xi) + V(\xi, R)$$

(h - \epsilon) \phi(\xi) = 0, \quad \phi(\xi) = \phi_t(\xi_t)\phi_p(\xi_p)

$$\Psi(\xi,R) = \sum_{i} \phi_i(\xi) \chi_i(R)$$

The index *i* runs through all the channels. The scattering wavefunction $\chi_i(R)$ brings to the detector the information that channel *i* has been populated. The elastic channel 0 is the only one present as a plane wave,

$$\Psi(\xi, R \to \infty) = \phi_0(\xi) e^{ik_0 R_z} + \sum_i \frac{e^{ik_i R}}{R} \phi_i(\xi) f_i(\theta)$$

Example: 2-channel system

$$\Psi(\xi, R) = \phi_0(\xi) \chi_0(R) + \phi_1(\xi) \chi_1(R)$$

with

$$(h - \epsilon_0) \phi_0(\xi) = 0, \quad (h - \epsilon_1) \phi_1(\xi) = 0.$$

The Schrödinger equation

$$(T_R + V(\xi, R) + h(\xi) - E)|\Psi\rangle = 0$$

can be projected on channels 0,

$$\begin{aligned} \langle \phi_0 | (T_R + V(\xi, R) + h(\xi) - E) | \Psi \rangle &= 0 \\ \to (T_R + \langle \phi_0 | V | \phi_0 \rangle + \epsilon_0 - E) \chi_0(R) &= - \langle \phi_0 | V | \phi_1 \rangle \chi_1(R), \end{aligned}$$

and 1,

$$egin{aligned} &\langle \phi_1 | (T_R + V(\xi, R) + h(\xi) - E) | \Psi
angle = 0 \ &
ightarrow (T_R + \langle \phi_1 | V | \phi_1
angle + \epsilon_1 - E) \chi_1(R) = - \langle \phi_1 | V | \phi_0
angle \chi_0(R), \end{aligned}$$

Coupled equations and optical potential

If we define

$$E_i = E - \epsilon_i, \qquad V_{ij}(R) = \langle \phi_i | V | \phi_j \rangle \equiv \int \phi_i(\xi) V(\xi, R) \phi_j(\xi) d\xi,$$

we obtain the coupled equations

$$(T_R + V_{00}(R) - E_0)\chi_0(R) = -V_{01}\chi_1(R),$$

$$(T_R + V_{11}(R) - E_1)\chi_1(R) = -V_{10}\chi_0(R).$$

From the second equation,

$$\chi_1(R) = \lim_{\eta \to 0} (E_1 - T_R - V_{11} + i\eta)^{-1} V_{10} \chi_0(R) = G_1 V_{10} \chi_0(R).$$

We can substitute in the first equation,

$$(T_R + V_{00}(R) - E_0)\chi_0(R) = -V_{01}G_1V_{10}\chi_0(R)$$

Coupled equations and optical potential

We can rewrite

$$(T_R + U_0(R) - E_0)\chi_0(R) = 0,$$

where

$$U_0(R) = V_{00} + V_{01}G_1V_{10}$$

is the optical potential. For an arbitrary number of channels,

$$(T_R + V_{ii}(R) - E_i)\chi_i(R) = -\sum_{j\neq i} V_{ij}\chi_j(R),$$

and the optical potential is

$$U_0(R) = V_{00} + \sum_{i \neq 0} V_{0i} G_i V_{i0},$$

where

$$G_i = \lim_{\eta \to 0} (E_i - T_R - V_{ii} + i\eta)^{-1},$$

is the Green's function in the channel *i*.

Oak Ridge, June 26 2019

Solving the coupled equations: first order DWBA

Let's compute the cross section for the population of channel *c*. We'll do that assuming that all channels are weakly populated, so the elastic channel 0 strongly dominates.

Solving the coupled equations: first order DWBA

Get states and interactions (input from structure!),

$$V_{ij}(R) = \langle \phi_i | V | \phi_j \rangle \equiv \int \phi_i(\xi) V(\xi, R) \phi_j(\xi) d\xi,$$

② Get the elastic channel,

$$(T_R + V_{00} - E_0)\chi_0 = -\sum_{i\neq 0} V_{0i}\chi_i \rightarrow (T_R + V_{00} - E_0)\chi_0 = 0.$$

Write down channel c,

$$(T_R + V_{cc} - E_c)\chi_c = -\sum_{i\neq c} V_{ci}\chi_i \rightarrow (T_R + V_{cc} - E_c)\chi_c = V_{c0}\chi_0$$

• Solve using $G_c = \lim_{\eta \to 0} (E_c - T - V_{cc} + i\eta)$

$$\chi_c(R) = G_c V_{c0} \chi_0(R) = \int G_c(R, R') V_{c0}(R') \chi_0(R') dR'$$

③ Get the amplitude where the detector is $(R
ightarrow \infty)$,

$$\chi_c(R \to \infty) = \frac{e^{k_c R}}{R} \int \chi_c(R') V_{c0}(R') \chi_0(R') dR'$$

Oak Ridge, June 26 2019

Solving the coupled equations: first order DWBA

We're done! Remember that

$$(T_R+V_{cc}-E_c)\chi_c=0.$$

We now have the T matrix,

$$T_{c} = \int \chi_{c}(R') V_{c0}(R') \chi_{0}(R') dR'$$

= $\int \chi_{c}(R') \phi_{c}(\xi) V(R',\xi) \phi_{0}(\xi) \chi_{0}(R') dR' d\xi.$

Note the parallel with Fermi's Golden rule! Now we can write down the desired cross section,

$$\frac{d\sigma}{d\Omega}(\theta) = |T_c(\theta)|^2$$

Other approaches: time-dependent methods

In the Time Dependent Hartree Fock (TDHF) method, the time-dependent Schrödinger equation is solved, with a mean-field Hamiltonian H,

Other approaches: coupled-channels methods

The coupled differential equations are solved to all orders, with a limited number of channels M,

$$(T_R+V_{ii}(R)-E_i)\chi_i(R)=-\sum_{j\neq i}^M V_{ij}\chi_j(R),$$

. .

Other approaches: microscopic methods

- Interacting clusters described with a microscopic Hamiltonian with 2and 3-body forces (no-core shell model).
- Relative motion described with scattering waves.
- Relative motion and coupled to intrinsic dynamics.
- computationally expensive: only light ions.

