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Nuclear reactions

Nuclear reactions are processes in which two nuclear species collide,
allowing them to exchange matter, energy, and momentum.
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Why do we care? Nuclear reactions applied

inertial confinement fusion waste management

reactions of
astrophysical
interest

» stockpile

stewardship r-process
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Why do we care? Nuclear reactions as an experimental too

e transfer reactions probe nuclear response
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Looking at things

data analysis

source

theoretical
interpretation

target
9 detector

reaction product

Oak Ridge, June 26 2019 slide 5/24




O

Reaction formalism, between structure and experiment

feaction calculati
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Time-dependent vs time-independent description

Time-dependent description — time-dependent Schrodinger equation

L 00(r t)
—IﬁT = H(r,t)o(r,t)
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Time-dependent vs time-independent description

Time-dependent description — time-dependent Schrodinger equation

9¢(r, t)

e ot

= H(r,t)o(r,t)
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Time-dependent vs time-independent description

Time-independent description — time-independent Schrodinger equation

H(r)o(r) = E¢(r)
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Time-dependent vs time-independent description

Time-independent description — time-independent Schrodinger equation

H(r)o(r) = E¢(r)
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Compound and direct reactions
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Compound and direct reactions
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Compound and direct reactions

individual quantum states
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2-body Scrhodinger equation in 3D

Projectilé } /\\ ds=r dd
/ rsen6
No Y
.......................... 7N our mission:
— b Co find the cross section!
— Tur;al /

Area=27 rsen@ rd0

Area=2m b db
dQ =2msen6 dO

B2 9% R+ 1)
-z L V(r)—E = =
(G + ) H VO E) =0, 6t =T on
where A/ is the angular momentum, related to the classical impact
parameter: ¢ = kb, where k is the linear momentum. If V(r — c0) =0,
. eikr
o(r — 00) = &' + —£(0)

do
% (0)=1(0)

2 s find scattering amplitude £(6)!
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Born series

Let's separate the problem into an easy and a hard to solve part,
H=T+ Uy(r)+ V(r),
where T is the kinetic energy operator, and Up(r) is easy to solve,

(T — Uo(r) — E)[¢o) = 0.

(T + Uo(r) = E)lg) = =V(r)l#)

1

— |9) = |¢0) +#—>mo E-T—Uptin Vig) = [¢o) + GoV[9),

where we have defined the operator

G i 1
= 1im
0 77—>0E*T*U0+I'77

called the Green's function, a.k.a. propagator.
Oak Ridge, June 26 2010 | Slide 1224



(Interlude: the Green's function)

The Green's function is a non-local, integral operator

Gol) = / Go(r, 7)o(+') ',
with

n_ L[ x(n)F(r) r<r
Go(r,r) = k { X(MF(r) r>r

x and F are two linearly independent solutions of the Hamiltonian T + Up,
(T+Up—E)x(r)=0, (T+Uy—E)F(r)=0,

with the boundary conditions,

eikr
x(r—0)=0, F(r—o0)=

r
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Born series

|9) = [¢o) + GoV|[9)
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Born series

[9) = |po) + GoV (|po) + GoV[9))
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Born series

|¢) = |po) + GoV (|po) + GoV [|do) + GoV[9)])
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Born series

= |po) + Go Vo + GoVGoV g + Go VG VGV g + .
%4
/> ) § + %
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Born series

|p) = |po) + GoV|¢o)

The first order term is known as the first-order Distorted Wave Born
Approximation (DWBA)

|¢) = |po) + GoV|¢o)-

In this approximation,

+/ Go(r, PYV(F)do(r) dF’

fF’ ’)qﬁo(r)dr r<r
=do+ ¢ { N x(rY)V()go(r)dr' r>r

. eikr
o 50) = &% £ [ 3V ool e
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Scattering ampitude in DWBA

Remember:
&(r — 00) = e + GTf(e).
In first-order DWBA
. elkr
P(r — 00) = e 4 — /X(r’)V(r’)gbo(r’) dr’
so, in DWBA, the scattering amplitude (a.k.a T matrix) is
T(0) = £6) = [ XV Yol o = (x|V6o)

We're done!
The desired cross section is
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Nuclei are composite objects: beyond 2-bodies

R a
Zp Et
Target and projectile have internal degrees of freedom & = {&;,&p}.

H=Tr+h(&)+ V(ER)
(h—e)o(§) =0, &(§) = ¢t(§t)¢p(§p)

V(ER) =D 6ilxi(R)
The index i runs through all the channels. The scattering wavefunction
Xi(R) brings to the detector the information that channel i has been

populated. The elastic channel 0O is the only one present as a plane wave,

e'kiR

W(E R = 00) = do(€)e™ + > == 0i()(0)
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Example: 2-channel system

V(& R) = do(§)xo(R) + ¢1(§)x1(R)
with
(h—e0)@o(§) =0, (h—e1)g1(§) =0.
The Schrodinger equation
(TR+ V(E,R)+h(&) — E)|V) =0
can be projected on channels 0,
(¢ol(Tr + V(&,R) + h(€) — E)|W) =0
— (Tr + (¢o| V|do) + €0 — E)xo(R) = —(¢o| V|$1)x1(R),
and 1,
(¢1l(Tr + V(§,R) + h(§) — E)|W) =0
= (Tr + (#1|V]g1) + &1 — E)xa(R) =

—(¢1]V]9o)x0(R),




Coupled equations and optical potential

If we define
E—E-c ViR = (@iVie) = [ (VL& RIS de.
we obtain the coupled equations

(Tr + Voo(R) — Eo)xo(R) = —Voix1(R),
(Tr + V11(R) — E1)x1(R) = —V1oxo(R).

From the second equation,

x1(R) (E1 — Tr — Vi1 + in) " Vioxo(R) = G1Vioxo(R).

= lim
n—0
We can substitute in the first equation,

(Tr + Voo(R) — Eo)xo(R) = — Vo1 G1 Vioxo(R)
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Coupled equations and optical potential

We can rewrite
(TR + Uo(R) — Eo)Xo(R) =0,
where
Uo(R) = Voo + Vo161 V1o
is the optical potential. For an arbitrary number of channels,
(Tr + Vi(R) — E)xi(R) = = > _ Vixi(R),
J#i
and the optical potential is
Uo(R) = Voo + Y _ Vi G Vio,
i#0
where

G = lim(E — Tp — Vi + in) 7,
n—0

is the Green's function in the channel J.
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Solving the coupled equations: first order DWBA

Let's compute the cross section for the population of channel c. We'll do
that assuming that all channels are weakly populated, so the elastic
channel 0 strongly dominates.

Oak Ridge, June 26 2019 slide 20/24



Solving the coupled equations: first order DWBA

@ Get states and interactions (input from structure!),

VilR) = (@i VIoy) = [ 6(OVIERI(6) de.
@ Get the elastic channel,
(Tr+ Voo — Eo)xo = — »_ Voixi = (Tr + Voo — Eo)xo = 0.
i£0
@ Write down channel c,
(TR + Vee — EC)XC = - Z VciXi — (TR + Vee — EC)XC = Voo X0
i#c
Q Solve using G = limy_o(Ec — T — Ve + in)

xe(R) = GoVeo xo(R) _/GC(R, R')Veo(R))xo(R') dR’

© Get the amplitude where the detector is (R — o),
ekeR
xe(R = o0) = £ /XC(R’)VCo(R’)Xo(R’)dR’
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Solving the coupled equations: first order DWBA

We're done!
Remember that

(TR + Vee — Ec)xc =0.

We now have the T matrix,
Te= [ xelR)Vaol R0l R) R
= /Xc(R/)¢c(§)V(R,a§)¢0(§)X0(R’)dR’ d¢.

Note the parallel with Fermi's Golden rule! Now we can write down the
desired cross section,

do

22O =T
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Other approaches: time-dependent methods

In the Time Dependent Hartree Fock (TDHF) method, the
time-dependent Schrodinger equation is solved, with a mean-field
Hamiltonian H,

ov(t)

ih
"ot

— HW(e),
and W(t) is obtained as a function of time.
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Other approaches: coupled-channels methods

The coupled differential equations are solved to all orders, with a limited
number of channels M,

M
(Tr+ Vi(R) = E)xi(R) = = >_ Vixj(R),

J#i
a + “Ne(0°-2'-4") inelastic cross sections
I. Thompson 10 ‘ : :
a-particle scattering on 2°Ne. 1w | 0+ ground ate
p g e N 2+ state of “Ne
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2 10
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| o IR
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b e b 10
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Scattering angle (degrees)

Oak Ridge, June 26 2019 slide 23/24



Other approaches: microscopic methods

@ Interacting clusters described with a microscopic Hamiltonian with 2-
and 3-body forces (no-core shell model).

@ Relative motion described with scattering waves.
@ Relative motion and coupled to intrinsic dynamics.
@ computationally expensive: only light ions.

Irelative motion with E X [kev]
resonating group method kin

(RGM)-> scattering waves
20

R/ L o)
P gt ’_‘15:

clusters described in
no-core shell model

P. Navréatil, S. Quaglioni
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