

Neutrinos, ORNL, and Nuclear Physics

Yuri Efremenko

EBSS-2019

June 28th

THE STANDARD MODEL

Recognition

Are Neutrinos Important?

This is HST field of view the same angular size as a grain of sand at 1 m

0.25 Protons per m

E~9.35·10⁸ eV

410 000 000 CMB photons per m³

T=2.73K, E~2.4·10⁻⁴ eV

340 000 000 neutrinos per m³ T=1.95K, E_(if m=0)~1.7·10⁻⁴ eV

Neutrino Discovery

FIG. 5. Energy distribution curve of the beta-rays.

Niels Bohr suggested that perhaps energy conservation did not hold inside the nucleus

B

C Astronee.com

Dear Radioactive Ladies and Gentlemen,

as the bearer of these lines, to whom I graciously ask you to listen, will explain to you in more detail, how because of the "wrong" statistics of the N and Li⁶ nuclei and the continuous beta spectrum, I have hit upon a desperate remedy to save the "exchange theorem" of statistics and the law of conservation of energy. Namely, the possibility that there could exist in the nuclei electrically neutral particles, that I wish to call other and the analysis of the surface principle and which further different

I HAVE DONE A TERRIBLE THING, I HAVE POSTULATED A PARTICLE THAT CANNOT BE DETECTED.

- WOLFGANG PAULI -

First Detection of Neutrinos

First neutrino detection from nuclear reactor Reines and Cowan 1956.

(took 25 years since prediction)

What do we Know About Neutrinos?

There are only three light neutrinos

Neutrinos can oscillate

$$\begin{pmatrix} v_{\theta} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{\theta 1} & U_{\theta 2} & U_{\theta 3} \\ U_{\mu 1} & U_{\mu 3} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$
Pontecorvo-Maki-Nakagawa-Sakata matrix

Neutrinos have non zero mass

We do not have any indications that neutrinos are not stable

What we do not know about neutrinos?

Exact mass value and why it is so small?

Neutrino Mass Ordering?

Is neutrino its own antiparticle?

Can neutrino help to explain baryon asymmetry of the Universe

How neutrinos affect evolution of the universe?

Large Neutrino Detectors

Double chooz

Borexino

SAGE

Minos

Ice cube

Baikal

Reno

Neutrino Program at the ORNL

I. Study of Reactor Antineutrinos \rightarrow PROSPECT experiment at HFIR

II. Search for Neutrino Mass → MAJORANA and LEGEND-200 experiments

III. Search for New physics \rightarrow COHERENT experiment at the SNS

Part I

Reactor Antineutrinos

Neutrino Oscillations

The idea of neutrino oscillations existed long before Davis experiment: Pontecorvo (1958), Maki, Nakagawa, and Sakata (1962), and Pontecorvo and Gribov (1969)

If m_v is non-zero, then mixing between different neutrino flavors is possible

What is produced and
detected is weak
eigenstate
$$|v_{j}\rangle$$

$$U_{jl} = \begin{bmatrix} \cos\theta_{12} \sin\theta_{12} & 0\\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\theta_{23} & \sin\theta_{23}\\ 0 & -\sin\theta_{12} & \cos\theta_{12} & 0\\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \times \begin{bmatrix} \cos\theta_{13} & 0 & e^{-i\delta}\sin\theta_{13}\\ 0 & 1 & 0\\ -e^{-i\delta}\sin\theta_{13} & 0 & \cos\theta_{13} \end{bmatrix} \times \begin{bmatrix} e^{-i\alpha_{1}/2} & 0 & 0\\ 0 & e^{i\alpha_{2}/2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Simplified expression for two flavor oscillations in a vacuum:
$$P(v_{l} \rightarrow v_{l'}) = \sin^{2}2\theta \sin^{2}(1.27 \Delta m^{2}(eV^{2})L(m)/E_{v}(MeV))$$

Neutrino oscillations are analogous to "beatings" in the sound waves

Long Baseline Oscillations

Data from March 2002 till November 2009

KamLAND – 1 kt liquid scintillator detector

Reactor Antineutrino Anomaly (RAA)

Deficit of antineutrinos at a very short distances relative to predictions

To explain RAA need one more type neutrino (sterile), or something is wrong with predictions

ORNL PROSPECT Experiment aim to resolve RAA

HFIR compact core (h=0.5m r=0.2m) served as a point like source of neutrinos

Use highly segmented detector to accumulate statistics for several distances at the same time

ORNL PROSPECT Experiment

Prospect First Result

24 608 IBD events detected, average 750/day

What nuclear data influence the reactor antineutrino flux prediction?

Changes in the fission yield, direct and cumulative

Need to Know all Decays into Excited

Organized in 3 Rings of 6 modules each (Inner, Middle, and Outer) 1 - Center module, same dimensions but with a 2.5" diameter hole About 1 ton of Nal(Tl)! Over 5 tons of lead shielding + neutron shielding (even more at ANL!)

Carbon Fiber

Other total absorption spectrometers include the Lucrecia, DTAS (Valencia, Jyvaskyla), SuN (MSU).

IAEA, April 2019

ORNL's Tandem, on-line mass separator and MTAS

MTAS - higher mass fission peak (38 decays measured) January 2012, March, October-December 2015, January 2016

Ce 139	Ce 140	Ce 141	Ce 142	Ce 143	Ce 144	Ce 145	Ce 146	Ce 147	Ce 148	Ce 149	
137.641 d	88.450	32.508 d	11.114	33.039 h	284.8 d	2.98 m	13.52 m	56.4 s	56 s	5.3 s	
La 138	La 139	La 140	La 141	La 142	La 143	La 144	La 145	La 146	La 147	La 148	
0.090	99.910	1.6781 d	3.92 h	92.6 m	14.3 m	40.9 s	24.8 s	6.27 s	4.015 s	1.26 s	
Ba 137	Ba 138	Ba 139	Ba 140	Ba 141	Ba 142	Ba 143	Ba 144	Ba 145	Ba 146	Ba 147	
11.232	71.698	83.06 m	12.752 d	18.27 m	10.7 m	14.5 s	11.5 s	4.31 s	2.22 s	893 ms	
Cs 136	Cs 137	Cs 138	Cs 139	Cs 140	Cs 141	Cs 142	Cs 143	Cs 144	Cs 145	Cs 146	
13.16 d	30.1671 y	32.2 m	9.27 m	63.7 s	24.94 s	1.689 s	1.791 s	994 ms	582 ms	323 ms	
Xe 135	Xe 136	Xe 137	Xe 138	Xe 139	Xe 140	Xe 141	Xe 142	Xe 143	Xe 144	Xe 145	
9.10 h	8.87	3.83 m	14.08 m	39.68 s	13.60 s	1.73 s	1.22 s	511 ms	388 ms	188 ms	
I 134	I 135	I 136	l 137	I 138	I 139	I 140	I 141	I 142	I 143	I 144	
52.0 m	6.61 h	45s 84 s	24.2 s	6.4 s	2.29 s	860 ms	430 ms	~200 ms	100 ms	50 ms	
Te 133	Te 134	Te 135	Te 136	Te 137	Te 138	Te 139	Te 140	Te 141	Te 142		
12.5 m	41.8 m	18.6 s	17.5 s	2.49 s	1.4 s	>300 ns	300 ms	100 ms	50 ms		
Sb 132	Sb 133	Sb 134	Sb 135	Sb 136	Sb 137	Sb 138	Sb 139				
2.79 m	2.5 m	780 ms	1.68 s	923 ms	450 ms	500 ms	300 ms	^{300 ms} Priority 1 , 2 , 3 : 12 decays			
Sn 131	Sn 132	Sn 133	Sn 134	Sn 135	Sn 136	Sn 137	reactor high-energy $\overline{\boldsymbol{v}}$ (8)				
56.0 s	39.7 s	1.45 s	1.12 s	530 ms	250 ms	190 ms					🐝 Q.

Nuclear Physics and RAA

Part II

Neutrino Mass

Neutrino Mass

$^{3}H \rightarrow ^{3}He + e^{-} + v_{e}$

$0.0 < \Sigma m_{v} < 1 \text{ eV}$

Possible Advance in Direct Search for Neutrino mass

Katrin experiment started to take data last year

Need to wait for a first result a few years

Are there any alternative methods?

Chart Of Isotopes

Mass Parabola

Double Beta Isotopes

ββ2v-mode:

Isotope	$T_{1/2}^{2\nu}$ (y)	References	$M_{GT}^{2 u}~({ m MeV^{-1}})$
^{48}Ca	$(4.2 \pm 1.2) \times 10^{19}$	(55, 56)	0.05
$^{76}{ m Ge}$	$(1.3\pm 0.1) imes 10^{21}$	(57, 58, 59)	0.15
$^{82}\mathrm{Se}$	$(9.2\pm 1.0) imes 10^{19}$	(60, 61)	0.10
$^{96}{ m Zr}^{\dagger}$	$(1.4^{+3.5}_{-0.5}) imes 10^{19}$	(62, 63, 64)	0.12
100 Mo	$(8.0\pm0.6) imes10^{18}$	$(65, 66, 67, 68, 69, 70), (71)^{\dagger}$	0.22
$^{116}\mathrm{Cd}$	$(3.2 \pm 0.3) imes 10^{19}$	(72, 73, 74)	0.12
$^{128}{ m Te}^{(1)}$	$(7.2 \pm 0.3) imes 10^{24}$	(75, 76)	0.025
$^{130}{ m Te}^{(2)}$	$(2.7\pm 0.1) imes 10^{21}$	(75)	0.017
$^{136}\mathrm{Xe}$	$> 8.1 \times 10^{20} (90\% \text{ CL})$	(77)	< 0.03
$^{150}\mathrm{Nd}^{\dagger}$	$7.0^{+11.8}_{-0.3} \times 10^{18}$	(68, 78)	0.07
$^{238}U^{(3)}$	$(2.0\pm 0.6) imes 10^{21}$	(79)	0.05

Phase space Nuclear Matrix Element $\left(T_{1/2}^{2\nu}\right)^{-1} = G_{2\nu}(Q_{\beta\beta}, Z) |M_{GT}^{2\nu}|^2$

Two neutrinos or zero neutrinos?

Neutrino nature

Dirac Particles and antiparticles are different

Particle is identical to its own antiparticle

Neutrino – Left Handed Anti Neutrino - Right handed

Mixing between neutrinos and anti neutrinos is possible. Probability of mixing is proportional to the neutrino mass

If this is correct there are huge implications → lepton number violation

There is always uncontrolled energy losses in the non sensitive part of setup Detector and target are the same media. No energy losses in the passive material. ⁷⁶Germanium was custom made by "Mother Nature" for 2β0v search

•This is a great opportunity to have the same atoms for target and for detector

No any other atoms need to be in the detector (almost correct)

Intrinsically Germanium detectors are very clean

High Ge density makes detectors very compact

Ge detector has the best energy resolution

The Majorana Demonstrator **CAK RIDGE** National Laboratory

~ 30 kg of Isotopically Enriched ⁷⁶Ge detectors located at ultra quiet conditions with minimum radioactive background. Natural ⁷⁶Ge is 7.5%

Majorana Demonstrator Location

The Majorana Collaboration

Controls Of Backgrounds

Ultra-pure materials

- Low mass design
- Custom cable connectors and front-end boards
- Selected plastics & fine Cu coax cables
- Underground Electro-formed Cu Th decay chain (ave) ≤ 0.1 μBq/kg U decay chain (ave) ≤ 0.1 μBq/kg

Detector assembly

- Dedicated glove boxes with a purged N₂ environment

Machining and Cleaning

- Cu machining in an underground clean room
- Cleaning of Cu parts by acid etching and passivation
- Nitric leaching of plastic parts

Detector Readout Components

Fine Cu coaxial cable and clean connectors

Connectors reside on top of cold plate. In-house machined from Vespel. Axon' pico co-ax cable. Low background solder and flux.

String Assembly

Detector Module and Shield

Two independent modules are deployed:

- A self-contained vacuum and cryogenic vessel housing the detector cryostat
- Contains a portion of the shielding
- Can be transported for assembly and deployment

Cryostat loading

Pb and outer Cu shield

Module deployment

Muon active shield

Limit on the half Live time $< 2.5 * 10^{25}$ yr

Imply that $m_{\nu} < (200-433) \text{ meV}$ $M^{0\nu} = 2.81 - 6.13$ $G_{0\nu} = 2.365 * 10^{-15} \text{ yr}^{-1}$ $g_{A} = 1.27$ $\left(T_{1/2}^{0\nu}\right)^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^{2} < m_{\nu} >^{2}$

Need to better understand nuclear matrix elements

MJD and Gerda joining efforts → LEGEND-200

Global Neutrino Mass Status

Part III

Something Very New and Absolutely Unique to ORNL

Coherent Elastic neutrino-Nucleus Scattering (CEvNS)

A neutrino scatters on a nucleus via exchange of a virtual Z boson, and the nucleus recoils as a whole; coherent up to E_{u}^{\sim} 50 MeV

D.Z. Freedman PRD 9 (1974)

Submitted Oct 15, 1973

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering.

V.B.Kopeliovich & L.L.Frankfurt

JETP Lett. 19 (1974) Submitted Jan 7, 1974

CEvNS cross-section is large!

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2) \quad \propto N^2$$

CEvNS cross section is accurately predicted by the Standard Model

CEvNS Eluded Detection for 43 Years

Straight-forward to calculate

"Huge" cross section > 10⁻³⁹ cm²

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

First Observation in 2017

World Wide Efforts to Detect CEvNS

Except COHERENT, all other collaboration attempt to use nuclear reactors as a neutrino source

Nuclear reactors give large flux, but low energy neutrinos with a constant flux

SNS-Spallation Neutrino Source

Proton beam energy – 1.0 GeV Intensity - 10¹⁶ protons/sec Pulse duration - 380ns(FWHM) Repetition rate - 60Hz Total power – 1.4 MW Liquid Mercury target

Neutrino Production at the SNS

Number of each flavor of neutrinos produced at SNS is 1.9.10²² year¹

COHERENT Collaboration

Neutrino Alley at the SNS

Target station basement location is isolated from neutron beam lines There are no voids between SSN target and Neutrino Alley There is extra protection from cosmic rays by neutron beam lines shielding

But neutrinos freely reaching this place

Csl detector Installation (August 2015)

First Detection of CEvNS with Csl detector

Next is Liquid Argon Target

Single Phase Liquid Argon Detector CENNS-10

Aim is to detect CEvNS for very different target

Sig: 8.86%

Energy (keV

CENNS-10 SNS timeline:

- 10-12/2016: (re)build, commission and deployed detector at SNS
- 12/16 5/17: "Run -0". Poor light collection, E_{thresh}~100keVnr Test of hardware.
- 7/17- now: "Run 1" Rebuild detector. Light collection increase by a factor of 10! It should be enough to see CEvNS.
 E_{thresh}~20keVnr
 Presently accumulated statistics is ~4.1 GWhr (~1*10²³ POT)
- We implemented blind analysis by looking on the data between beam spills only. Planning to open box soon!!!!

Future Physics for COHERENT – looking for anomalies

Those studies become significant if we do measurements with a very good accuracy

To do so we need multiple detectors able to accumulate large statistics with accurate measurements of recoil spectra Second Generation – ton scale detectors and SNS neutrino flux normalization

Next Step - 1 ton LAr detector

Need high statistics low background measurements of CEvNS

Transition from 22 kg to 1 ton LAr detector.

Can fit at the same place where presently 22 kg detector is sitting

Will see ~3 000 of CEvNS events per year

Important Next Step – SNS Neutrino Flux Normalization

Presently we assume that neutrino flux at SNS is known within 10%

Cross sections of neutrino interaction with Deuterium are known with 2-3% accuracy

> S.Nakamura et. al. Nucl.Phys. A721(2003) 549

Prompt NC v_µ +d \rightarrow 1.8*10⁻⁴¹ cm² Delayed NC v_{eµ-bar}+ d \rightarrow 6.0*10⁻⁴¹ cm² Delayed CC v_e + d \rightarrow 5.5*10⁻⁴¹ cm²

For 1 t fiducial mass detector ~ thousand interactions per year

Detector calibration with Michel Electrons from cosmic muons (same energy range) Well defined D₂O mass constrained by acrylic tank

10 cm of light water tail catcher

Outer dimensions 2.3 * 2.3 * 1.0 m³

SNS calibration and CC measurements on Oxygen

We Will Deploy Various Detectors with wide range of Nuclear Targets

Why Nuclear Form Factors are cool?

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

Origin of Nuclear Form Factor

- Neutrino (v) interacts with entire nucleus (A), not just individual nucleons and quarks
- For large nuclei, E_v < 50 MeV to meet coherence condition
- De Broglie wavelength for 50 MeV v

$$\lambda = \frac{h}{p} = \frac{hc}{E} = \frac{1200 \text{ eV fm}}{50 \text{ MeV}} \sim 25 \text{ fm}$$

Compare to ~fm (10⁻¹⁵ m) nuclear radius

Low Q = long de Broglie wavelength

Measuring Form Factors we can extract what is nucleus neutron radius

High Q =short

de Broglie wavelength

Radii of ²⁰⁸Pb and Neutron Stars

- Pressure of neutron matter pushes neutrons out against surface tension ==> R_n-R_p of ²⁰⁸Pb correlated with P of neutron matter.
- Radius of a neutron star also depends on P of neutron matter.
- Measurement of Rn (²⁰⁸Pb) in laboratory has important implications for the structure of neutron stars.

Neutron star is 18 orders of magnitude larger than Pb nucleus but has same neutrons, strong interactions, and equation of state.

C.Horowitz

Gravitational Waves

Historic detection of Gravitational Waves in 2015 from merger of two black holes

Measure chirp signal as two bodies radiate gravitational waves and spiral in to higher frequencies

GW170817

On August 17, 2017 GW were detected with independent observation y Fermi and Integral spacecrafts of a short gamma ray burst observation

Extensive follow up observe this event at Xray, ultra violet, visible, infrared and radio waves.

This event was a merger of two neutron stars

Black holes are perfectly spherical objects, but neutron stars can be deformed

Merger GW170817: deformability of NS

- Gravitational tidal field distorts shapes of neutron stars just before merger.
- Dipole polarizability of an atom ~ R³.

$$\kappa = \Sigma_f \frac{|\langle f | r Y_{10} | i \rangle|^2}{E_f - E_i} \quad \propto R^3$$

 Tidal deformability (or mass quadrupole polarizability) of a neutron star scales as R⁵.

$$\Lambda \propto \Sigma_f \frac{|\langle f | r^2 Y_{20} | i \rangle|^2}{E_f - E_i} \propto R^5$$

• GW170817 observations set upper limits on Λ_1 and Λ_2 .

C.Horowitz

Neutrino and Gravitational Waves

FIG. 1. The dimensionless tidal polarizability $\Lambda_{\star}^{1.4}$ of a $1.4M_{\odot}$ neutron star as a function of the neutron-skin thickness of ²⁰⁸Pb (lower abscissa) and the radius of a $1.4M_{\odot}$ neutron star (upper abscissa) as predicted by the FSUGold2 family of relativistic interactions. Constraints on $R_{\rm skin}^{208}$ and $R_{\star}^{1.4}$ are inferred from adopting the $\Lambda_{\star}^{1.4} \leq 800$ limit deduced from GW170817 [2].

PHYSICAL REVIEW LETTERS 120, 172702 (2018)

Featured in Physics

Neutron Skins and Neutron Stars in the Multimessenger Era

F. J. Fattoyev, 1.* J. Piekarewicz, 2.† and C. J. Horowitz 1.‡

Detect two neutron stars merge via gravitational waves

From merger time calculate NS masses

From tidal deformability measure NS radius Detect CEvNS on heavy nucleus at the SNS

From nuclear form factor, extract pressure of neutron matter

Calculate NS radius for given mass

Compare !!!

Neutrinos are cool

They are belong to domain which has overlap between particle physics, nuclear physics and astrophysics

There is extensive neutrino program at the ORNL

Bushation; 6 Johan Jamesiadi The Royal Swedish Academy of Scien