Berkeley Nuclear Database Projects

Aaron M. Hurst amhurst@berkeley.edu

Department of Nuclear Engineering University of California, Berkeley

June 24 - 29, 2019

Aaron M. Hurst amhurst@berkeley.edu

Table of Contents

1 ENSDF

- Nuclear Physics Databases
- ENSDF applications
- Requesting structure data needs
- 2 EGAF
 - Introduction to EGAF
 - Prompt Gamma Activation Analysis
 - Thermal neutron capture
 - Improving the decay scheme

3 Baghdad Atlas

- Inelastic Scattering
- The Baghdad Atlas
- Development of the database
- Querying the database
- Demo
 - BACKUP SLIDES

.

ENSDF and potential applications

伺 ト イヨト イヨト

Aaron M. Hurst amhurst@berkeley.edu Exotic Beam Summer School 2019, Oak Ridge National Lab

Nuclear Physics Databases ENSDF applications Requesting structure data needs

Structure (ENSDF) and Reactions (ENDF)

Libraries hosted at the National Nuclear Data Center (NNDC)

See National Macheer Data Center	BROOKHAVEN
NOT DESIGN AND A 1000 FOR A 1000 FOR A 1000 FOR A 1000 FOR A 1000	/ ~~~
ENGOP: Evaluated Nucleur Structure Data File Search and Retrieval Lancement 2014-01-0 ENSOP provides recommended nached atricular and decay Information. Promove recommendent calls and attricular that only tables were utilized, planae attricult.	
Ensur detaces added/modified in the last month!	
Suggestions or comments? Please let us knowl	
Outick Search By Naclide By Reaction By Decay Recently Added	
Naclide or mass: Search ptom, pe.bld, rat, in pushing ato;	
Chart out the <u>thermory of Institute</u> Altitute of other nuclides area bid evaluated and recent XARCs, datasets.	

- Evaluated Nuclear Structure Data File (ENSDF)
- E_L , J^{π} , E_{γ} , δ_{γ} , $\alpha \dots$
- Basic science
- String

- Evaluated Nuclear Data File (ENDF)
- σ from (n, x) reactions
- Applications
- Numerical

 <</td>

 </td

Nuclear Physics Databases ENSDF applications

Migration of data into nuclear databases

Aaron M. Hurst amhurst@berkelev.edu

Exotic Beam Summer School 2019, Oak Ridge National Lab

(同) (ヨ) (ヨ)

The Nuclear Data Pipeline

Nuclear Physics Databases ENSDF applications Requesting structure data needs

Nuclear data library development

Aaron M. Hurst amhurst@berkeley.edu Exotic Beam Summer School 2019, Oak Ridge National Lab

Nuclear Physics Databases ENSDF applications Requesting structure data needs

ENSDF data types

- Standard records, e.g., the Level L record (E, J^π, T_{1/2}...); the Gamma G record (E_γ, I_γ, α...).
- Continuation records, e.g., L: particle-decay modes (α, β⁻, etc.); G: reduced transition probabilities (B(M1), B(E2), etc.).

Aaron M. Hurst amhurst@berkeley.edu

Nuclear Physics Databases ENSDF applications Requesting structure data needs

ENSDF-to-RIPL translator for reaction calculations

Application: Calculate $(n, \gamma) \gamma$ -ray spectrum as function of increasing E_n . Requires **structure** data and reaction-model parametrizations.

- Reaction calculations often use RIPL-formatted data sets.
- Reaction codes: CoH, EMPIRE, TALYS.
- RIPL may be out of date (RIPL-3 2009).
- Structure data sets often prepared in ENSDF format.

Nuclear Physics Databases ENSDF applications Requesting structure data needs

Application processing methodology

Nuclear Physics Databases ENSDF applications Requesting structure data needs

ENSDF-to-RIPL: Representative translation for ²⁴³Pu $^{242}Pu(n, \gamma)$ data set

243PU	242Pu(N,G) E	=THERMAL		
243PU	580 3	5033.9 26 6.9	05E+320 4757.0 2.8	2012WA38
243PU cl	\$S(2n)=11344	{I3}; S(2p)=1	13019 syst {i298} (20)	L2Wa38)
243PU I	0.0	7/2+	4.956 H 3	
243PU2	%B-=100			
243PU I	. 58.28 8	3 9/2+		
243PU c	58.3 16	0.0031 4 [M	11]	27.2 4
243PU2c	Must be ther	re, Based on in	tensity balance	
243PU3cl	i to close to	Am241d so not	observed	
243PU	58.3 16	0.0059 22 [M	11]	27.2 4
243PU c	Based on DIC	EBOX Expectati	Lon	
243PU I	. 124.65 16	9 11/2+		
243PU	66.37 71	L 0.0003125 [M	11]	18.61
243PU2c	66 Dicebox i	Increased		
24	Pu_Adopt.ens	Top (14,80)	(Fundamental)	
243PU	1042.37 8	3 0.0074 3 [M	11]	0.041
243PU I	. 1437.60 26	9 31/2+		
243PU c	347.5			
243PU I				
	. 1444 3	3		
243PU I	. 1444 3 . 1465 3	3		
243PU I 243PU I	. 1444 3 . 1465 3 . 1491.82 26	3 1/2-,3/2-		
243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16	3 1/2-,3/2- (3/2-)		
243PU 243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16 . 838.45 16	8 9 1/2-,3/2- 9 (3/2-) 9 0.0065 6 [E	=1]	0.0055
243PU 243PU 243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16 . 838.45 16 . 1627.6	3 3 1/2-,3/2- (3/2-) 0.0065 6 [E 33/2+	1]	0.0055
243PU 243PU 243PU 243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16 . 838.45 16 . 1627.6 . 1.7E+3 3	3 1/2-,3/2- (3/2-) 0.0065 6 [E 33/2+	46 NS 13	0.0055
243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16 . 838.45 16 . 1627.6 . 1.7E+3 3 . %SF=100	3 1/2-,3/2- (3/2-) 0.0065 6 [E 33/2+ 3	1] 46 NS 13	0.0055
243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU	. 1444 3 1465 3 1491.82 26 1516.39 16 838.45 16 1627.6 1.7E+3 3 %SF=100 5036.33 7	3 3 3 3 3 3 3 3 3 3 3 1 2 4 3 3 1 2 - 3 3 2 - 3 3 2 - 3 - - - - - - - - - - - - -	-1] 46 NS 13	0.0055
243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU 243PU	. 1444 3 . 1465 3 . 1491.82 26 . 1516.39 16 . 838.45 16 . 1627.6 . 1.7E+3 3 .%SF=100 . 5936.33 7 . 3519.08 11	3 3 3 3 3 3 3 3 1 1 2 4 5 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7	1] 46 NS 13	0.0055

243Pu	243 94		91				5.033900	6.95	8888			
1	0.000000	3.5		1.78E+04						= 100.0	-87 000	
2	0.058288	4.5		0.00E+00					9/2+ 8			
								0.058	3.546E-02	1.000E+00	2.728E+01	
3	0.124650	5.5		0.00E+00					11/2+ 0			
								0.066	2.424E-02	4.753E-01	1.861E+01	
								0.125	7.819E-02	5.247E-01	5.718E+00	
- 4	0.207100	6.5		0.00E+00	6				13/2+ 0			
5	0.287568			0.00E+00								
								0.229	5.761E-03	8.757E-83	5.288E-01	
								0.288	4.236E-01	9.912E-01	1.348E+00	
6	0.299000			0.00E+00					15/2+ 0			
7	0.333430	3.5		0.00E+00					7/2+ 0			
								0.046	1.138E-02	6.401E-01	5.526E+01	
								0.275	1.413E-01	3.554E-01	1.515E+00	
								0.333	2.395E-03	4.524E-83	8.898E-01	
8	0.383648	0.5		3.38E-07					(1/2+) 8			
-00-:	F1 z0	94_rip	l.da	t Top ()	16,	87	l (Fur	idamenta				
67	1.444888	-1.0	8	0.00E+00	0				8			1
67 68	1.444000 1.465000	-1.0 -1.0	8 8	0.00E+00 0.00E+00	0 0				8			1
67 68 69	1.444000 1.465000 1.491820	-1.0 -1.0 0.5	0 0 -1	0.00E+00 0.00E+00 0.00E+00	0 0 0				8 9 /2-,3/2- 8			1
67 68 69 70	1.444000 1.465000 1.491820 1.516390	-1.0 -1.0 0.5 1.5	8 9 -1 -1	0.00E+00 0.00E+00 0.00E+00 0.00E+00	0 0 1				8 9 /2-,3/2- (3/2-) 0			
67 68 69 70	1.444000 1.465000 1.491820 1.516398	-1.0 -1.0 0.5 1.5	8 -1 -1	0.00E+00 0.00E+00 0.00E+00 0.00E+00	0 0 1				8 /2-,3/2- 0 (3/2-) 0 9.945E-01	1.000E+00	5.500E-03	
67 68 69 70 71	1.444000 1.465000 1.491820 1.516390 1.627600	-1.0 -1.0 0.5 1.5 16.5	8 -1 -1 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	0 0 1 0				0 (3/2-) 9.945E-01 33/2+ 0	1.000E+00	5.500E-03	
67 68 69 70 71 72	1.444000 1.465000 1.491820 1.516390 1.627600 1.700000	-1.0 -1.0 0.5 1.5 16.5 -1.0	8 -1 -1 1 8	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-08	0 0 1 0 0				8 (3/2-,3/2- 0) (3/2-) 0 9.945E-01 33/2+ 0 1	1.000E+00 = 100.0	5.500E-03	
67 68 69 70 71 72 73	1.444888 1.465888 1.491828 1.516398 1.627688 1.708888 5.036338	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 9 -1 -1 -1 1 0 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+08 0.00E+00	0 0 1 0 16				8 (3/2-) 0 (3/2-) 0 9.945E-01 33/2+ 0 1 1/2+ 0	1.000E+00 - 100.0	5.500E-03 000 \SF	
67 68 69 70 71 72 73	1.444000 1.465000 1.491820 1.516390 1.627600 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-08 0.00E+00	0 0 1 0 16				8 (3/2-) 0 (3/2-) 0 9.945E-01 33/2+ 0 1 1/2+ 0 7.517E-02	1.000E+00 = 100.0 7.532E-02	5.500E-03 000 %SF 2.000E-03	
67 68 69 70 71 72 73	1.444000 1.465000 1.491820 1.516390 1.627600 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16			1 0.838 3.519 3.545	8 (3/2-) 0 9.945E-01 33/2+ 0 1 1/2+ 0 7.517E-02 5.927E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02	5.500E-03 000 %SF 2.000E-03 0.000E+00	
67 68 69 70 71 72 73	1.444000 1.455000 1.4918200 1.5163900 1.6276000 1.7000000 5.0363300	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16		25 79 69 66	1 0.838 3.519 3.545 3.599	8 (2-,3/2-0 (3/2-) 0 9.945E-01 33/2+0 1 1/2+0 7.517E-02 5.927E-02 3.180E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02	5.500E-03 000 %SF 2.000E-03 0.000E+00	
67 68 69 70 71 72 73	1.444080 1.4650809 1.4918200 1.5163900 1.6276080 1.7000000 5.0363300	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 0 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16		25 79 69 66 64	0.838 3.519 3.545 3.599 3.615	8 /2-,3/2- 0 (3/2-) 0 9.945E-01 33/2+ 0 1 1/2+ 0 7.517E-02 5.927E-02 3.180E-02 1.287E-01	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-01	5.500E-03 000 %SF 2.000E-03 0.000E+00 0.000E+00	
67 68 69 70 71 72 73	1.444088 1.465089 1.491820 1.516390 1.627608 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16		25 79 69 66 64 62	1 0.838 3.519 3.545 3.599 3.615 3.649	8 9 (3/2-) 9.945E-01 33/2+ 0 1 1/2+ 0 7.517E-02 5.927E-02 3.180E-02 1.287E-01 8.384E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-01 8.384E-02	5.500E-03 000 %SF 2.000E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
67 68 69 70 71 72 73	1.444000 1.455000 1.491820 1.516390 1.627600 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E-08 0.00E+00	0 0 1 0 16		23 79 69 66 64 62 57	1 0.838 3.519 3.545 3.599 3.615 3.649 3.735	8 9 (3/2-) 9 9.945E-01 3/2+ 0 7.517E-02 3.180E-02 1.287E-01 8.384E-02 6.216E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-01 8.384E-02 6.216E-02	5.500E-03 000 %SF 2.000E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
67 68 69 70 71 72 73	1.444000 1.455000 1.491820 1.516390 1.627600 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16		25 69 66 64 62 57 49	1 0.838 3.519 3.545 3.615 3.615 3.615 3.645 3.645 3.645 3.645	8 (2-,3/2-0 (3/2-) 9.945E-01 33/2+0 1 1/2+0 7.517E-02 3.180E-02 1.287E-01 8.384E-02 6.216E-02 6.216E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-01 8.384E-02 6.216E-02 2.024E-02	5,500E-03 000 %SF 2,000E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	
67 68 69 70 71 72 73	1.444000 1.455000 1.491820 1.516390 1.627600 1.700000 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+08 0.00E+00	0 0 1 0 16		25 69 66 64 62 57 49 47	1 0.838 3.519 3.545 3.599 3.615 3.649 3.735 3.860 3.735 3.860 3.907	8 (2-,3/2-) (3/2-) (3/2-) (3/2-) (3/2+) (3/2	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-02 5.216E-02 2.024E-02 5.204E-02	5.598E-03 000 %SF 2.998E-03 0.898E+00 0.998E+00 0.998E+00 0.998E+00 0.998E+00 0.098E+00	
67 68 69 70 71 72 73	1.444000 1.465000 1.491820 1.516390 1.627600 1.627600 5.036330	-1.0 -1.0 0.5 1.5 16.5 -1.0 0.5	8 -1 -1 1 8 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.60E+00 0.00E+00	0 0 1 0 16		23 69 66 64 62 57 49 47 40	1 0.838 3.519 3.545 3.649 3.615 3.649 3.735 3.860 3.907 4.087	8 (3/2-,3/2-) 0 (3/2-) 0 9.945E-01 33/2+ 0 1 1/2+ 0 7.517E-02 5.927E-02 5.927E-02 1.287E-01 8.384E-02 5.204E-02 5.204E-02 5.204E-02	1.000E+00 = 100.0 7.532E-02 5.927E-02 3.180E-02 1.287E-01 8.384E-02 6.216E-02 2.024E-02 5.204E-02 5.204E-02 5.204E-02	5.500E-03 000 %SF 2.000E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	

Exotic Beam Summer School 2019, Oak Ridge National Lab

• • = • • = •

Nuclear Physics Databases ENSDF applications Requesting structure data needs

ENSDF-to-XML: ¹³³Cs gamma (G) record

¹³³Ba ϵ -decay data set

```
<level id="Cs133 e2" index="2">
       <energy value="160.6121" unit="keV">
        <uncertainty value="0.0009" pdf="normal"/>
       </energy>
    ENSDF 133Cs.xml 31% (168,84) (XML)------
     <level id="Cs133 e3" index="3">
       <energy value="383.8491" unit="keV">
        <uncertainty value="0.0008" pdf="normal"/>
       </energy>
    ENSDF 133Cs.xml 49% (258,84)
                                 (XML)-----
       <decay mode="gamma">
        <gammaEnergy value="223.2368" unit="keV">
          <uncertainty value="0.0013" pdf="normal"/>
        </gammaEnergy>
        <branchingRatio value="0.730">
          <uncertainty value="0.005" pdf="normal"/>
        </branchingRatio>
        <multipolarity value="M1+E2"/>
        <mixingRatio value="0.114" sign="-">
          <uncertainty value="0.014" pdf="normal"/>
    ENSDF 133Cs.xml 58% (303,84) (XML)-----
        <finallevel>
          <flevel id="Cs133 2" index="2"/>
          <fenergy value="160.6121" unit="keV"/>
        </finalLevel>
    ENSDF 133Cs.xml 63% (317,84)
                                 (XML)-----
133CS G 223.2368 13 0.730 5M1+E2
                                   -0.114 14
                                                0.0975
```

- Interpreted numeric ENSDF data useful
- XML output can be verbose
- No longer space limited
- Numerical accuracy and LSD no longer an issue
- Level indexing: include final levels associated with γ decay

< ロ > < 同 > < 三 > < 三 >

Nuclear Physics Databases ENSDF applications Requesting structure data needs

ENSDF-to-XML: ¹³³Cs $T_{1/2}$ (T) and δ_{γ} (MR) quantities

https://escholarship.org/uc/item/23v3f35g

<parent id="Bal33" A="133"> <level> <energy value="0.0" unit="keV"> <uncertainty value="0.0" pdf="NA"/> </energy> <spin string="1/2" value="0.5" unit="hbar"/> <parity value="+"/> <halflife value="10.551" unit="v"> <uncertainty value="0.011" pdf="normal"/> </halflife> lifetime value="15.222" unit="y"> <uncertainty value="0.016" pdf="normal"/> </lifetime> <0-value value="517.5" unit="keV" transition="G.S. to G.S."> ENSDF 133Cs.xml 4% (38.0) (XML)-----</branchingRatio> <multipolarity value="M1+E2"/> <mixingRatio value="0.08" sign="None"> <uncertainty upperBound="+0.02" lowerBound="-0.03" pdf="asymmetric"> <symmetrizationMethods> <method1 value="0.075000"> <uncertainty value="0.025000" pdf="normal"/> </method1> <method2 value="0.072021"> <uncertainty value="0.025226" pdf="normal"/> </method2> </symmetrizationMethods> </uncertainty> </mixingRatio> ENSDF 133Cs.xml 83% (429,0) (XML)-----

- Allows for inclusion of derived quantities
- Derive τ from parsed
 T_{1/2} field
- Symmetrization methods for handling asymmetric uncertainties

()

Implicit ENSDF ⇒ **Explicit** XML

Aaron M. Hurst amhurst@berkeley.edu

Nuclear Physics Databases ENSDF applications Requesting structure data needs

Nuclear Structure Experimental Issues Website

http://nucleardata.berkeley.edu/hpnsrl

"Create website of high-priority nuclear structure and decay-data measurements for information and guidance."

Nuclear Structure Experimental Issues

List of priorities:

Nucleus	Issue	Submission	Action	Status	f
²⁶ Si	Conflicting nuclear structure data	A. M. Hurst	A. M. Hurst	resolved	
86Sr	Branching ratio of the 184.5 keV transition from the first 6 ⁺ state	A. Negret	pending	open	
⁹⁹ Rh	99Rh Q(EC) in 2011Wa38 not consistent	J. Tuli	pending	open	
238U	Better knowledge of branching ratios, multipolarities and mixing ratios	M. Kerveno	pending	open	

- About
- Help
- · Contact us
- Links

Status key:

open = Action on item yet to be taken in progress = Action on item currently in progress resolved = Issue has been resolved

Add a request

 \bigcirc

ENSDF

EGAF Baghdad Atlas Demo Nuclear Physics Databases ENSDF applications Requesting structure data needs

New request page

http://nucleardata.berkeley.edu/hpnsrl

э

(日)

ENSDF

EGAF Baghdad Atlas Demo Nuclear Physics Databases ENSDF applications Requesting structure data needs

Raised experimental issues

http://nucleardata.berkeley.edu/hpnsrl

-EXPERIMENTAL REQUEST:	 Home
Name: Alexandru Nograt	About
Affiliation: IFIN-HH	Help
Email: alnegret@tandem.nipne.ro Nucleus: 86Sr Subject: Branching ratio of the 184 5 keV transition from the first 6 ⁺ state	Contact u
	• Linke
REQUEST MOTIVATION:	• LINKS
Contradicting information exist in recent literature regarding the branching ratio of the 184.5-keV gamma transition decaying from the first 6+ level (E=2857 keV): 2017/006-23.71(14)% 2016/125 - 8.11(10)% 2014/125 - 3.21(2)%	
In the latest ENSDF evaluation (2015), the value is 5.7(25)%. A gamma-gamma coincidence measurement may clarify the issue.	
Responsible Individual (RI): Pending assignment Email:	
RI COMMENTS:	
COMMENTS:	

- 86 Sr: Discrepant branching ratios for the 184.5-keV γ ray.
- 23.7(14)%; 8.1(10)%; 3.2(2)%; ENSDF \Rightarrow 5.7(25)%.
- γ - γ coincidence measurement may help.

< ロ > < 同 > < 三 > < 三 >

EGAF

æ

Aaron M. Hurst amhurst@berkeley.edu Exotic Beam Summer School 2019, Oak Ridge National Lab

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

The EGAF project

- Evaluated Gamma-ray Activation File (EGAF)
- IAEA initiative led by Rick Firestone (LBNL) and researchers from the Budapest Reactor
- Thermal-capture cross-section data
- Isotopes close to stability
- Natural targets Z = 1 82,90,92 except for Z = 2,61

< ロ > < 同 > < 三 > < 三

• \sim 32,000 prompt and \sim 3,000 decay γ -ray lines

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

The EGAF database

- Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis (IAEA, Vienna, 2007).
- Handbook of PGAA with Neutron Beams, Ed. G. L. Molnár (Kluwer Academic, Dordrecht, the Netherlands, 2004).
- http://www-nds.iaea.org/pgaa/egaf.html
- EGAF 2007 present: Prompt γ-ray analysis and statistical modeling enriched isotopes.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

- Peer-reviewed publications.
- E_{γ} , S_n , σ_{γ} , σ_0 , Γ_0 , J^{π} , δ_{γ} .

Introduction to EGAF **Prompt Gamma Activation Analysis** Thermal neutron capture Improving the decay scheme

PGAA @ Budapest Reactor: Experimental Facility

Aaron M. Hurst amhurst@berkeley.edu

Introduction to EGAF **Prompt Gamma Activation Analysis** Thermal neutron capture Improving the decay scheme

Nondestructive assay (NDA) of materials

- Enable NDA: Guide Evaluated Nuclear Data File (ENDF) library development using high-resolution HPGe-quality γ-ray line data from EGAF.
- Improved capture- γ and inelastic- γ data needed for high-priority isotopes for accurate simulation of interrogation systems.

- Interrogation system: Evaluating munitions for presence of explosives, chemicals or nerve agents.
- SF, DD, DT neutron sources.
- Characteristic γ rays (primaries).
 (Gus Caffrey, Ed Seabury, INL)

Introduction to EGAF **Prompt Gamma Activation Analysis** Thermal neutron capture Improving the decay scheme

"NA-22" Priority List

Ζ	Element	Ζ	Element	Ζ	Element
1	Н	26	Fe	74	W
3	Li	28	Ni	75	Re
4	Be	29	Cu	77	lr
5	В	31	Ga	78	Pt
6	С	39	Y	79	Au
7	Ν	40	Zr	82	Pb
8	0	41	Nb	84	Po
12	Mg	42	Мо	88	Ra
13	AI	46	Pd	90	Th
14	Si	57	La	92	U
22	Ti	63	Eu	93	Np
23	V	64	Gd	94	Pu
24	Cr	73	Ta	95	Am

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction to EGAF **Prompt Gamma Activation Analysis** Thermal neutron capture Improving the decay scheme

"NA-22" Priority List

Ζ	Element	Ζ	Element	Ζ	Element
1	Н	26	Fe	74	W
3	Li	28	Ni	75	Re
4	Be	29	Cu	77	lr
5	В	31	Ga	78	Pt
6	С	39	Y	79	Au
7	Ν	40	Zr	82	Pb
8	0	41	Nb	84	Po
12	Mg	42	Мо	88	Ra
13	AI	46	Pd	90	Th
14	Si	57	La	92	U
22	Ti	63	Eu	93	Np
23	V	64	Gd	94	Pu
24	Cr	73	Ta	95	Am

(n, γ) analysis published

э

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation A Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Thermal neutron capture: 139 La (n, γ)

•
$$T = 293 \text{ K} \Rightarrow E_n = 25.3 \text{ meV}$$

- s-wave capture (l = 0): compound @ E ≈ S_n
- Capture-state spin (*J_{CS}*) is related to G.S. spin (*J_{gs}*) of target:

$$J_{CS} = J_{gs} + I + s$$

$$\pi_{CS} = \pi_{gs} (-1)^{\prime}$$

- Beneath threshold for particle evaporation
- Deexcitation via γ emission
- Bohr's extreme statistical model

ENSDF Introduction to EGAF EGAF Prompt Gamma Activatio Baghdad Atlas Thermal neutron capture Demo Improving the decay sche

EGAF case study: ¹³⁹La (n, γ)

APPLICATIONS

- ¹³⁹La is abundant fission product with significant cumulative yield from thermal- and fast-*n* fission of ^{233,235}U and fast-*n* fission of ²³⁹Pu.
- Neutron-capture cross sections for ¹³⁹La provide useful ingredient for nuclear-reactor fuel-related applications.

BASIC SCIENCE

- ¹³⁹La(n, γ) reaction to probe statistical properties of nuclei near N = 82 shell closure.
- Assess decay-scheme nuclear structure information for the compound nucleus ¹⁴⁰La.

< ロ > < 同 > < 回 > < 回 >

- La₂O₃: $T_{IRR} = 2.7$ h; $\phi \approx 2.3 \times 10^{6}$ n/cm²/s (thermal).
- extract partial γ -ray cross sections $\sigma_{\gamma}(E_{\gamma})$

Exotic Beam Summer School 2019, Oak Ridge National Lab

ENSDF Introduction to EGAF EGAF Prompt Gamma Activatir Baghdad Atlas Thermal neutron capture Demo Improving the decay sche

Simulation of the γ -decay cascade

- Monte Carlo approach
 - Generate (n, γ) decay scheme simulations originating at S_n
 - All levels and γ rays below ${\it E}_{\rm c}$ are taken from experiment
 - All levels and γ rays above ${\it E}_{\rm c}$ are randomly generated
 - Primary γ rays from experiment when known
 - Adopted photon strength function (PSF) and level density (LD) models to calculate simulated level-feedings and compare to experimental data

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analy Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Model assessment

- PSF constrained by high-energy (γ, n) data (Giant Dipole Electric Resonance).
- BA: Brink-Axel GLO: Generalized Lorentzian KMF: Kadmenski-Markushev-Furman
- BA, GLO describe (γ, n) data rather well.

< ロ > < 同 > < 回 > < 回 >

- GLO, KMF describe low-energy Oslo-type data rather well.
- Assess PSF systematics approaching N = 82 shell closure.
- PSF for ¹⁴⁰La (N = 83) is best described using models that "flatten out" as $E_{\gamma} \rightarrow 0$.

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Ana Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

PSF in nuclei near N = 82

Siem et al., Phys. Rev C 65, 044318 (2002)

• ¹⁴⁸Sm ($N = 86; \beta_2 = 0.16$)

•
$$E_{\gamma} \rightarrow 0$$
: $f_{E1}(E_{\gamma}) \rightarrow \sim \text{const}$

• cf.
$$^{138-140}$$
La ($N = 81 - 83$;
 $|\beta_2| \le 0.045$), 144 Nd ($N = 84$;
 $\beta_2 = 0$)

• ¹⁴⁹Sm (
$$N = 87; \beta_2 = 0.18$$
)

- $E_{\gamma} \rightarrow 0$: $f_{E1}(E_{\gamma})$ differs from ¹⁴⁸Sm
- Addition of 1 particle \Rightarrow pronounced change in PSF

PSF informs nuclear shape?

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

Simulated level populations in ¹⁴⁰La

- Fair treatment requires assessment of PSF + Nuclear Level Density (NLD) model combinations.
- Residuals indicate all levels below $E_{\rm crit}$ adequately reproduced by all PSF + NLD model combinations.
- Only model combinations with $|R|>2\sigma$ invoke BA PSF.
- Adopted width Γ₀ = 50(2) meV: Combinations invoking KMF and GLO (+ nuclear level density) generate ⟨Γ₀⟩ within 2-σ.
- All PSF+NLD combinations yield statistically-consistent ground-state feeding (*P*₀).

Average total radiative-capture cross section $\sigma_0 = 9.36(74)$ b

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analysis Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Low-lying levels in ¹⁴⁰La (compound nucleus)

Partial decay scheme from ENSDF for $E_L < 350 \text{ keV}$

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analysis Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Interpretation of ¹⁴⁰La low-lying levels

- Below excitation energy $E_L \lesssim 600$ keV in ¹⁴⁰La: single-particle states.
- Orbitals near Fermi surface: $\pi(1g_{7/2})$ and $\pi(2d_{5/2})$ quasiprotons coupling with $\nu(2f_{7/2})$ quasineutrons [and to a lesser extent $\nu(3p_{3/2})$]:

$$egin{aligned} &|\pi(1g_{7/2})\otimes
u(2f_{7/2});\,J^{\pi}=0^{-},1^{-},2^{-},3^{-},4^{-},5^{-},6^{-},7^{-}
angle,\ &|\pi(2d_{5/2})\otimes
u(2f_{7/2});\,J^{\pi}=1^{-},2^{-},3^{-},4^{-},5^{-},6^{-}
angle. \end{aligned}$$

- 14 levels expected based on above configurations with mixed and pure state vectors.
- Can we interpret known decay scheme based on above multiplet of states?

< ロ > < 同 > < 三 > < 三 >

ENSDF Introduct EGAF Prompt O Baghdad Atlas Thermal Demo Improving

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

¹³⁹La (n, γ) : Statistical-model analysis using ENSDF data

- Measured σ_{γ} taken from ¹³⁹La (n, γ) and are consistent with I_{γ} (branching ratios) from the Evaluated Nuclear Structure Data File (ENSDF).
- Internal conversion (α), mixing ratios (δ_{γ}) and spin-parity (J^{π}) data taken from ENSDF.
- Compare calculated population of levels to experimental data.
- Residuals show good agreement implying well-characterized decay scheme for $E_c = 285$ keV?

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

¹³⁹La (n, γ) : γ -ray intensity balance for ¹⁴⁰La

 γ-ray intensity balance for all levels decay scheme:

$$\Delta I_{\gamma} = \sum_{i=1}^{M} I_{\gamma_i}(\mathrm{in}) - \sum_{j=1}^{N} I_{\gamma_j}(\mathrm{out})$$

- Condition: $\sum_{j=1}^{N} I_{\gamma_j}(\text{out}) \ge \sum_{i=1}^{M} I_{\gamma_i}(\text{in})$
- Upper plot: ENSDF data for α and δ_{γ}
- Lower plot: α and δ_{γ} optimized according to measured I_{γ} from ¹³⁹La (n, γ)

ENSDF Intro EGAF Pron Baghdad Atlas Ther Demo Impr

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

Statistical-model analysis using optimized γ -decay data

EGAF Baghdad Atlas

Improving the decay scheme

Statistical-model analysis using optimized γ -decay data

Э

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analysi Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Changes to ¹⁴⁰La decay scheme

- New $J^{\pi} = 5^{-}$ for $E_L = 103.8$ keV [previously $J^{\pi} = 6^{-}$] from statistical-model analysis.
- New $J^{\pi} = 6^{-}$ for $E_L = 322.1$ keV [previously $J^{\pi} = (5^{-}, 6^{-})$] from expected multiplet of states.
- 322.1-keV $J^{\pi} = 6^{-}$ level \Rightarrow pure $\pi(2d_{5/2}) \otimes \nu(2f_{7/2})$ configuration.
- α and δ_{γ} optimized according to ΔI_{γ} balance for low-lying γ -ray transitions.
- No evidence for tentative ENSDF-reported levels at (92.8), (106.1), and (320.2) keV.
- Physical Review C 99, 024310 (2019).

< ロ > < 同 > < 回 > < 回 > .

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analysi Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Properties of the ¹⁴⁰La low-lying levels

ENSDF

Aaron M. Hurst amhurst@berkeley.edu

ENSDF Introduction to EGAF EGAF Prompt Gamma Activation Analysi Baghdad Atlas Thermal neutron capture Demo Improving the decay scheme

Properties of the ¹⁴⁰La low-lying levels

Aaron M. Hurst amhurst@berkeley.edu

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

Augmentation of the nuclear data libraries

э

イロト イヨト イヨト

Introduction to EGAF Prompt Gamma Activation Analysis Thermal neutron capture Improving the decay scheme

Augmentation of the nuclear data libraries

The Baghdad Atlas

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Aaron M. Hurst amhurst@berkeley.edu Exotic Beam Summer School 2019, Oak Ridge National Lab

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

Inelastic $(n, n'\gamma)$ reactions

- Radiative-capture (n, γ) reactions provide diagnostic for NDA applications
- But is it the most useful γ -ray signature?
- $\sigma_{(n,\gamma)}(E_n = \text{thermal})$ is high; $\sigma_{(n,\gamma)}(E_n > \text{thermal})$ is small
- Can we learn anything from high-energy neutrons?
- Other reaction channels are open
- (n, n') is primary energy-loss mechanism for fast neutrons in heavy nuclei \Rightarrow look for $(n, n'\gamma)$ signatures in NDA

Improved $(n, n'\gamma)$ data needed for accurate simulations of interrogation systems [NDNCA Workshop, LBNL (2015)]

< ロ > < 同 > < 回 > < 回 >

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

Current status

²³⁹Pu(*n*, *n*'γ) yeilds measured at LANL, but focus was ²³⁹Pu(*n*, 2*n*): L. A. Bernstein *et al.*, PRC **65**, 021601 (R) (2002); (EXFOR 2015)

- Available data are scattered amongst published literature
- LANL, GELINA, Ohio, Kentucky (structure)
- Gamma Energy Neutron Energy Spectrometer for Inelastic Scattering (GENESIS) @ 88" Cyclotron LBNL

Aaron M. Hurst amhurst@berkeley.edu

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

Exotic Beam Summer School 2019, Oak Ridge National Lab

"The Baghdad Atlas": Fast neutron γ -ray data from (n, n')

ATAAC ATUAS CREKTPOB OF GAMMA-RAY SPECTRA FROM THE INELASTIC OT HEATPYCOPO SCATTERING	 Compilation of energy-integrated inelastic neutron-scattering (n, n'γ) data disseminated in book format
PACCEPHIAN OF REACTOR BLOTPAL HOPPOIDS FAST NEUTRONS PEAKTOPA	• \sim 7000 γ rays (E_{γ} and BR) from 105 samples: 76 natural and 29 isotopically-enriched targets
	 Set of consistent measurements performed under identical conditions
 The second second	 Ge(Li) viewing filtered fast-neutron beam line at the IRT-5000 Reactor: NRI, Baghdad, Iraq
Trkov (IAEA) ⇒ Fires	stone (LBNL) \Rightarrow Sleaford (LLNL)

Inelastic Scattering **The Baghdad Atlas** Development of the database Querying the database

The IRT-5000 Reactor

No longer accepting beam-time proposals

Aaron M. Hurst amhurst@berkeley.edu

・ロト・台ト・ミト・ミト き うへ Exotic Beam Summer School 2019, Oak Ridge National Lab

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

The IRT-5000 Reactor flux

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

The Baghdad Atlas: $(n, n'\gamma)$ data

- Extract $\sigma_{\gamma}(E_{\gamma})$ relative to 847-keV $2_1^+ \rightarrow 0_{gs}^+$ in ⁵⁶Fe for all data sets.
- Convolve IRT-500 spectrum 56 Fe $(n, n'\gamma_{847})$ from ENDF-B/VIII.0:

$$\langle \sigma_{\gamma} \rangle = \frac{\int\limits_{E_n=0}^{E_n=10} \phi(E_n) \sigma_{\gamma}(E_n) dE_n}{\int\limits_{E_n=0}^{E_n=10} \phi(E_n) dE_n} \equiv \frac{\sum\limits_{k=0}^{N} \phi(E_n) \sigma_{\gamma}(E_n) \Delta E_n}{\sum\limits_{k=0}^{N} \phi(E_n) \Delta E_n}.$$

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

Direct and indirect feeding of the 56 Fe 2_1^+ state

Aaron M. Hurst amhurst@berkeley.edu

Inelastic Scattering The Baghdad Atlas **Development of the database** Querying the database

Development of relational database I

http://nucleardata.berkeley.edu

- Serves applications community (nonproliferation, NDA)
- Nuclear data evaluation: benchmarking reaction models in fast-fission neutron-energy range
- Limited use \Rightarrow data *was* only available in printed form
- Data now compiled into a set of CSV-style ASCII tables
- Developed suite of Python scripts and C modules to build SQLite relational database
- Downloadable software platform hosted at: National Nuclear Data Center (NNDC) http://www.nndc.bnl.gov/lbnlatl.html Nuclear Science and Security Consortium (NSSC) http://nssc.berkeley.edu/research/nuclear-data/atlas/

Inelastic Scattering The Baghdad Atlas Development of the database Querying the database

Development of relational database II

http://nucleardata.berkeley.edu

Motivation Introduction Installation Schema Data access Cross sections Download

Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons

[A.M. Demidov et al., Nuclear Research Institute, Baghdad, Iraq (Moscow, Atomizdat 1978)]

Measured ^{nat}Fe(n,n'y) spectrum cf. y-ray energy spectrum retrieved from SQL database query

Aaron Hurst <amhurst@berkeley.edu>

Department of Nuclear Engineering, University of California, Berkeley

 ENSDF Inelastic Scattering EGAF The Baghdad Atlas Baghdad Atlas Development of the database Demo Querving the database

Jupyter Notebook: Automating cross-section calculations

Enriched ¹¹⁰Pd

- Z = int(46)
- A = int(110)
- Chem_symb=str(''110Pd'')

Natural B

- Z = int(5)
- A = int(0)
- Chem_symb = str(''B''

A short demonstration

< ∃ →

Aaron M. Hurst amhurst@berkeley.edu Exotic Beam Summer School 2019, Oak Ridge National Lab

- UC Berkeley J. C. Batchelder, L. A. Bernstein, R. B. Firestone, A. M. Hurst, J. Vujic
- LBNL M. S. Basunia, L. A. Bernstein

伺 ト イヨト イヨト

- Approach: Distribute database to expert user community in as general a form as possible
- Source code to build database locally
- Source CSV-style data sets for all 105 samples
- SQL scripts and Jupyter Notebook provided to exemplify methods for retrieving and interacting with the data
- HTML documentation installation instruction and help pages (offline viewing)
- A PDF of the original book by A. M. Demidov et al.
- Total package size: \sim 22 Mb

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

BACKUP SLIDES

Installing the Baghdad Atlas

- Linux or Mac OS X only (not Windows)
- Requirements: SQLite3 database engine, The GNU C compiler gcc, Python libraries
- Jupyter Notebook requires Python 2.7 or 3
- More info: nucleardata.berkeley.edu/into.html
- A Makefile is provided to automatically detect OS and Python version
- Download in \$HOME and build:

cd ~/BaghdadAtlas/src
make # build C extension-functions library
make run # build the SQLite database
make install # install the library and database

• To cleanup any of the C, Python, SQLite artifacts, Notebook objects, or remove database: make help

• More info: nucleardata.berkeley.edu/install.html

Terminal-based access

- sqlite3 engine: terminal-based front-end to SQLite libraries
- Evaluate SQL queries interactively (or use batch/shell)

```
amhurst@amhurst-office:sql codes$ sqlite3 atlas baghdad py3.db
SQLite version 3.13.0 2016-05-18 10:57:30
Enter ".help" for usage hints.
sqlite> .header on
sqlite> .mode column
sqlite> SELECT symbol, sample composition, mass, exposure time
....> FROM sample
\dots > WHERE Z >= 30 AND Z <=40:
        sample composition mass
                                             exposure time
symbol
Zn
            Zn
                                31.5
                                             6.0
Ga
            Ga
                                 15.5
                                             23.0
                                 4.7
                                             44.0
Ge
            Ge
                                 22.1
                                             21.0
As
            As
Se
            Se
                                 24.0
                                             12.9
                                 32.0
Br
            BrInGlass
                                             12.0
Rb
                                15.5
                                             23.0
            Rb2C03
Sr
            SrC03
                                12.1
                                             9.0
Ŷ
            Y NO3 3 6H20
                                 28.9
                                             22.0
7r
            7r02
                                 42.0
                                             16.1
salite>
sglite>.exit
amhurst@amhurst-office:sgl codes$
```


э

< ロ > < 同 > < 回 > < 回 > .

BACKUP SLIDES

SQL scripting methods

target	sample	compound	E [keV]	dE [keV]	BR	dBR	cross section [mb]	error cs [mb]
Pd	E .	118Pd	356.9	0.2	0.88	0.04	1.97471562992	0.3617821893657
Pd	E .	118Pd	373.8	0.08	100.0	0.0	224.3995034	39.826177188166
Pd	E	118Pd	398.8	0.2	5.2	0.5	11.6687741768	2.3553680767885
Pd	E	118Pd	401.0	0.7	0.7	0.3	1.5707965238	0.7286488546343
Pd	E	118Pd	439.76	0.08	23.6	0.3	52.9582828924	9.4238557797666
Pd	E	118Pd	463.9	0.4	0.18	0.02	8.40391910612	0.0845768792683
Pd	E	118Pd	477.5	0.3	1.02	0.15	2.28887493468	0.5275598923434
Pd	E	118Pd	547.84	0.1	9.2	0.5	28.6447543128	3.8319492768344
Pd	E	118Pd	572.89	0.1	5.4	0.3	12.1175731836	2.2535161312255
Pd	E	118Pd	584.48	0.1	1.65	0.1	3.7025918061	0.6943988216352
Pd	E	118Pd	641.8	1.1	0.04	0.015	0.08975980136	0.0372393674442
Pd	E	118Pd	648.51	0.16	0.51	0.04	1.14443746734	0.2228628679205
Pd	E	118Pd	653.1	0.2	0.52	0.05	1.16687741768	0.2355368076788
Pd	E	118Pd	656.42	0.15	0.93	0.05	2.08691538162	0.3948961149347
Pd	E	118Pd	672.4	1.1	0.039	0.015	8.887515896326	0.0370707445969
Pd	E	118Pd	687.7	0.3	0.16	0.02	8.35903928544	0.0779482586727
Pd	E	118Pd	722.5	0.4	0.11	0.015	8.24683945374	0.0552467292836
Pd	E	118Pd	729.9	1.0	0.07	0.02	8.15707965238	0.0528337622724
Pd	E	118Pd	762.2	0.4	0.13	0.02	0.29171935442	0.0685182873630
Pd	F	118Pd	778.3	9.2	0.61	0.05	1.36883697874	0.2675975949293
Pd	E	118Pd	773.0	0.8	0.11	0.03	8.24683945374	0.0803191935502
Pd	F	118Pd	795 83	0.1	1.84	8 12	4 12895886256	0 7807118033455
Pd	Ē	118Pd	813 52	0.1	4.2	8.3	9 4247791428	1 8838861479917
Pd	Ē	118Pd	838.5	0.3	3.6	8.5	6 731985182	1 6398211647916
Pvi .	Ē	11804	848.9	0.7	1.6	0.4	3 5963926544	1 1887868998899
P.4	Ē	11804	985.2	0.2	0.82	0.05	1 84007592788	0.3532485834961
P.d	Ē	11804	929.2	0.3	0.29	0.04	8 65075855986	0 1462741537498
P.d	E C	11004	941.5	1.2	0.021	0.014	0.0000000000000	0 0227549106422
P.d	5	11004	070 0	0.5	0.079	0.014	8 175021612652	0 0474777533944
1.4	L.	11010	274.4	0.0	0.070	0.010	0.113031011032	0.0474772333040

- Useful for complicated queries
- Several SQL scripts provided
- Schema defined in HTML documentation
- Manipulate data in sample (normalization) and nucleus (γ-ray properties) relational tables
- Convert enriched ¹¹⁰Pd intensities to partial $\sigma_{\gamma}(n, n'\gamma)$ i.e. calculate relative to $\langle \sigma_{\gamma}(n, n'\gamma) \rangle$ for $2^+_1 \rightarrow 0^+_{\rm gs}$ in ⁵⁶Fe
- Condition on γ -ray energies: $300 \le E_{\gamma} \le 1000$ keV
- Display selected variables

BACKUP SLIDES

Interaction using the Jupyter Notebook

18 (D)	K. α. κ. 4 δαλαβατιζητήρισης (K. 1) αν. κ. 4 δαλαβατιζητήρισης (K. 1) αν. βαλαβατιζήτης της μεταιχηματικής (K. 1) αν. βαλαβατιζήτης (K. 1) αν.
	eme channel exected public (exec) exected public (exec) exected public (exec) exected public (exec) exected public (exec) exected public (exec) exected public (exec) public (exec
103	$\operatorname{Re}(n,n'\gamma)$
1	$\sigma_{\gamma}(\text{Re})$

- Execute Python code in Jupyter Notebook
- To run sample Notebook provided requires a few additional Python libraries: numpy, sqlite3, matplotlib, seaborn
- SQL query: Convert natural rhenium intensities to cross sections for all lines with $E_{\gamma} < 1000$ keV and plot the results
- Inline visualization
- Share workflow with colleagues

BACKUP SLIDES

Using GUI to access data

atlas_baghdad_py3.db	* Structur	e Browse &	Search Ex	ecute SQL	DB Setting	5							
Master Table (1)	TABLE	nucleus		Search	Sho	wAll			Add	Duplica	te	Edit	Delete
Tables (2)	id	nuc	nuc Z	ener	d e	inte	d in	tran	com	com	ener	ex t	sam 1
Trample	1	lu -	3	478.4	0.3	100	0	1	71.1	Ir.	478.4	1	N
id	2	B	5	477.7	0.2	1048	50	F	7Li	F	477.7	F	N
flag	3	в	5	718.18	0.15	38	8	1	10B	r	718.2	1	N
element	4	B	5	1021.4	0.3	4.7	0.7	f	10B	f	1739.8	E.	N
7	5	8	5	1436.5	0.5	1.6	0.4	1	108	1	2154.9	1	N
symbol	6	B	5	2124	0.3	100	0	1	11B	r.	2124.3	1	N
N	7	B	5	2155	0.6	1.1	0.4	F	10B	f	2154.9	F	N
dN	8	B	5	2867.3	0.8	4.2	0.8	1	10B	1	3585.9	r I	N
e gamma norm	9	B	5	2895.1	0.8	4.6	0.8	F	11B	f	5019.8	F	N
A	10	8	5	4442.2	0.9	38	8	1	118	1	4443.2	lr .	N
mass	11	B	5	5018.4	1.2	18	3	f.	11B	f	5019.8	E.	N
exposure_time	12	c	6	4438	2	109	0	E.	12C	(f	4438.91	E.	N
enrichment	13	N	7	729.6	0.5	12	2	1	14N	1	5834.2	r .	N
sample composition	14	N	7	1634.6	0.3	67	5	E F	14N	(f	3947.7	f	N
isotope_norm	15	N	7	2312.8	0.3	100	0	1 C	14N	r	2313	r i	N
liews (0)	16	N	7	2792.5	2	5.7	1.6	f	14N	f	\$105.6	f	N
ndexes (0)	17	N	7	3384	3	11	2	1	14N	1	5697	r i	N
riggers (0)	18	N	7	3949.9	2.5	3.6	2	1	14N	f.	3947.7	r.	N
	19	N	7	\$104.6	0.8	22	5	f	14N	f	\$105.6	f	N
	20	0	8	1983	0.4	100	0	1	180	1	1983.1	r .	N
	21	0	8	6129.3	1	595	120	F	160	f	6130.6	F	N
	22	F	9	197.1	0.2	2700	200	1	19F	1	197.1	r i	N
	27	10		10000	10.4	lenn -	10	4	lear	4	10000		- 144

- SQLite Manager add-on for Firefox browser
- Connect to database to browse and view data
- Manipulate data and execute SQL code through GUI

• • • • • • •