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Goals of This Lecture
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By the end of this lecture, you should be able to 
answer:
- How detectors actually work.
- Which parameters are actually measured, and which 

are inferred or calculated?
- How to process signals from detectors.
- Advantage of multi-channel signal processing.
 Detectors and Electronics Experts!!
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The Bible
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Believe what this text book says…
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Story Line of Lecture
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 Properties of nuclei we want to know

 How to study the properties

 How to detect particles

 Signal Processing

 Online Data Acquisition

 How put together for actual experiments

 Summary
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Mass differences between measurement and 
models for Zr isotopes H. Schatz, TALENT 2014

Monte-Carlo variations of nuclear properties.
Dark shaded region represents σmass = 100 keV. 
Mumpower et al., 2015
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Properties of Nuclei

• Nuclear Mass • Excitation energy, Spin and parity
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SM=Shell Model, CM=Microscopic Collective Model
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Properties of Nuclei

86Se(α,n) reaction rate ratios w/ various alpha OMP
J. Pereira  and F. Montes, Phys Rev C 93, 034611 (2016)

Liddick et al., 2016

Monte-Carlo variations of (n,γ) rates within a factor 
100 - 10 - 2 (light - darker - dark bands)

Calculated light curves of X-ray burst within a 
factor of 100
R. H. Cyburt et al., 2016

• Reaction Cross Sections (Reaction Rates)
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Properties of Nuclei

• Half-life of β-decay

Comparison of theoretical β-decay half-lives to measured 
values from the NNDC database

Mumpower et al., 2015
Red=FRDM1995+QRPA, Blue=KTUY05+gross theory

Monte-Carlo variations of half lives ranged 
from 10-1 to 10
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Properties of Nuclei

• Excitation function
• Nuclear Level densities 
and gamma-ray strength 
functions

Measured excitation function for 8B+p elastic 
scattering in the angular range of 164±7 degree 
compared to R-matrix calculations
G.V. Rogachev et al., 2006

The level density of 145Nd is normalized to
known discrete levels at low energies and to (𝑆𝑛) 
at the binding energy
K O Ay et al., 2016

Will improve the statistical model (e.g. Hauser-
Feshbach) for compound reaction cross section 
calculation.
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Sensitivity Studies for Significance

Nuclear chart with most sensitive (α,p) reaction rates
R. H. Cyburt et al., 2016

n-capture masses

b-decay half-lives b-delayed n-emission

Nuclei that significantly impact final r-process abundances
Mumpower et al., 2015

 Nuclear properties of rare isotopes are important!
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Nuclear Mass Study

• ToF Mass, MR-ToF, Penning Trap, Q-value of g.s. 

Penning Trap

MR-ToF
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Excitation Energy Study

• By measuring γ-ray, Q-value of reaction
K.L. Jones et al., Nature 2010

H. L. Crawford et al., 2016

thick Be target

Beam 

(132Sn)
CD2

target
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Nuclear Spin and Parity Study

By angular Momentum 
and Parity Selection Rules,

• Spin and parity: level scheme, angular distribution
K.L. Jones et al., Nature 2010

H. L. Crawford et al., 2016
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Reaction Cross Section Study

• Total Cross Sections: Yields

K. Schmidt et al., NPA8 2017
S. Ahn et al., CNR 2018

JENSA and SuperORRUA

HabaNERO
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Decay Half life Study

• Half life of nuclear decay: ΔTime of implants and (decay products, gamma 
ray or neutrons)

τ = 13.03±0.11

F. Montes et al. 2005
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Spin and Parity of Resonance Levels

• Excitation function: Yields over CoM energy

Schematic diagram of an 

event geometry in gas 
target TTIK experiment

G. V. Rogachev et al. 2010

J. Hooker et al. 2019
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Nuclear Level Densities

• Total Absorption of γ-ray using NaI scintillators
• MTAS at ORNL, CACTUS at Oslo, SuN at NSCL 

K O Ay et al., 2016

A. C. Larsen et al., 2018

A. Simon et al., 2013

M.Wolińska-
Cichocka et al., 2014

MTAS
SuN

CACTUS
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How to detect particles

• Interactions with matter!
• Ionizations, Scintillations, Heat, Reactions

Detector

e-

e-

lights
or

e-
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Silicon strip detectors

• Ionization energy = 3.62 eV
• Room temp (performance gains 
with cooling)
• Thin particle detectors 
(thicknesses ~20μm ~2 mm)
• Highly segmented
• Large area

Non-resistive strip

Resistive strip
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Silicon strip detectors

• Paschen's law: breakdown voltage necessary to start a discharge or electric 
arc, between two electrodes in a gas as a function of pressure and gap 
length.
• Check the pressure and DO NOT bias detector if uncertain!!
(small bias ~ 5V should be okay for testing anytime.)
• Monitor leakage current when biasing.
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Germanium detectors

• Ionization energy = 2.96 eV
• Operation Temperature = 77 K LN2
• Energy resolution ~ eV

• Planar Ge detectors (similar to Si det):
- Thin entrance window
- Measuring low energy γ-rays and x-rays
- Beta decay (implant)

• Coaxial Ge detectors:
- Large volume for measuring higher energy 
γ-rays 
- Some have coarse position from side-
channels
- Large arrays (e.g. Gammasphere)
- Often Compton suppressed wt BGO
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Germanium detectors

• Clover detectors:
- Four close-packed crystals in one 
cryostat
- Segmented readout for better position 
(Doppler) correction
- e.g. Exogam, Clarion, Clovershare

• Highly segmented tracking detectors:
- High segmentation
- Digital readout allows event 
reconstruction (tracking) using pulse 
shapes
- First point of interaction (Compton 
reconstruction) for Doppler correction
- Can dispense with Compton suppression 
to make higher efficiency possible
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Ionization Counter

• Ionization Counter:

~200 V

MUSIC detector at ANL

ORNL Fast Ion Counter
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Ionization Counter

• First ionization potential = energy to remove valence electron
• W-Value = average energy per e- – ion pair (nonionizing excitations, 
removal of more deeply bound electrons, etc)

• Energy resolution ~ 𝑁 ~ 𝐸/𝑤  𝐹 ∗ 𝐸/𝑤 (F: Fano factor)

• F ~ 0.2 for gasses, ~ 0.1 for semiconductors
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Proportional Counter and PPAC

• The high electric field produces Townsend avalanches.
• P-10 gas (90% argon and 10% methane mixture) 
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Micromegas and GEM

• High Electric field between gap
• Watch leakage currents for possible 
sparks

Cathode

GEM

Micromegas

Sample Particle Track from Micromegas

E-field of GEM

Diagrams of Micromegas
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Scintillators

• Inorganic scintillators: NaI(Tl), BGO, LaBr(Ce), BaF2, CsI, also noble gases
• Organic scintillators: plastics (solid and liquid)

• Photomultiplier tube (PMT) or photo diode
• High voltage required on PMT

CsI crystal

LaBr(Ce) crystal

SensL Si-PM

Schematics of PMT
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Low Energy (slow) Neutron Detector

• Neutrons are generally detected through nuclear reactions that result in 
prompt energetic charged particles such as protons, alpha particles, and so 
on.
• Slow neutron: En < 0.5 eV. 
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High Energy (fast) Neutron Detector 

• 1 keV < En < a few MeV

• Moderation technique: Design of tube matrix determines efficiency.
• neutron time-of-flight (nToF) technique: Good PSD is critical.

High Density 
Polyethylene

SABRE Liquid Scintillator

VANDLE Plastic Scintillator

NERO Neutron Counter

PSD vs Energy
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High Energy (fast) Neutron Detector 

• 1 keV < En < a few MeV

• Moderation technique: Design of tube matrix determines efficiency.
• neutron time-of-flight (nToF) technique: Good PSD is critical.

M. Febbraro et al. 2018

SABRE Liquid Scintillator

VANDLE Plastic Scintillator

W.A. Peters et al. 2016

S. Ahn et al. 2017

HabaNERO Neutron Counter
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Micro-channel Plate (MCP)
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• Micro-channel Plate: electron multiplication using high potential

Schematic Design of MCP 

Tracking Detector

Schematic Design of MCP

Z. Meisel et al., PoS (NIC XIII) 124 (2014).
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Micro-channel Plate (MCP)
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• Micro-channel Plate: electron multiplication using high potential

MCP tracking detector used for ToF Mass 

experiment

MCP tracking detector used for 84Se(d,p) 

experiment



Sunghoon(Tony) Ahn
EBSS 2019

Detectors Summary
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• Silicon Strip Detector: depletion region by pn-junction, measuring charged 
particles, low rates, Eionization = 3.62 eV, running in room temp., highly segmented 
(or resistive strip), large area

• Germanium Detector: measuring higher energy γ-rays, operation temp. = 77 K 
LN2, energy resolution ~ eV, high segmentation, digital readout 

• Ionization Counter: Eionization = 30 eV, electron drift velocity and distance between 
anode and cathode determines resolution of energy and position and beam rate.

• Proportional Counter: townsend avalanches, 
• Parallel Plate Avalanche Counter: two plates with P-10 gas, commonly used for 

particle tracking
• Micromegas and GEM: active target and particle track of light charged particles.

* Micromegas: Micromesh Gaseous Detector
* GEM:  Gaseous Electron Multiplier
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Detectors Summary
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• Inorganic scintillators (NaI(Tl), BGO, LaBr(Ce), BaF2, CsI): emiting lights from γ-
rays, converting lights to electric signals by PMT, high voltage 

• Slow Neutron Detectors: 3He(n,p), 6Li(n,α), 10B(n,α) in the proportional counter.
• Fast Neutron Detectors (Organic scintillators): combination of moderation with 

slow neutron detectors, neutron time-of-flight (nToF) technique (Pulse Shape 
Discrimination)

• Micro-channel Plate (MCP): electron multiplication using high potential. 
measuring beam particle track, high vacuum required.
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Signal Processing Diagram

• Conventional ways to process detected signals

e- e-

e-

e- e- e-
e- e- e-

charge-sensitive 
preamplifier

.

.

.

linear amplifier
(shaping amp)

constant fraction 
discriminator

Q

Q

V

Analog Digital 
Converter

V

timing
(trigger)
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Preamplifiers

• Remember output is voltage.
• For charge sensitive, output is proportional to charge integrated of Cf, if 
signal is fast compared to RfCf.
• Noise is proportional to Cd.

Sample preamp 

output signals
S.D. Pain, EBSS2016
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Shaping Amplifier

• Long tail of the preamp signal might overlap with 
the following signals to appear larger than it is. 
• Shaping time (or peaking time) can be chosen from 
several values.
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Discriminator

• Leading Edge Discriminator:
- Noise makes a bad timing of the trigger signal.
- timing sensitive to rise time of the signal.

• Constant Fractional Discriminator:
- better for timing.
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Time Analog Converter (TAC)

• Using trigger signals from each detectors, the time difference between the 
signals can be recorded for coincidences.

Det #1

Det #2

Δtime

ΔV
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Scaler and Time-stamp

• Counting triggers and signal rates is important.
• Recording time of events is also important.

• 250 MHz counting rate
• 32 bit channel depth

• 48bit timestamp
wt internal clock (= 13 days wt 4ns time resolution)

[Any important Logic Signals]
Clock
LiveClock
Master Trigger
Raw Trigger 1
Raw Trigger 2
Ion Counter Trig.
Prescaled Ion Counter Trig.



Sunghoon(Tony) Ahn
EBSS 2019 40

Signal Processing

• commonly used modules (Linear/Logic FIFO(inverterd), Logic Unit, GDG, 
ECL/NIM/TTL converter, LATCH module, Scale-down module (prescaler))
• NIM Logic = true when V < -0.8V, while TTL Logic = true when V > +1.5V  
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Analog Digital Converter (ADC)

• Peak sensing ADC
• Switched Capacitor Array for waveform recording
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Signal Processing Summary
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• From the preamp signal to DAQ readout

S.D. Pain, EBSS2016
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System Live Time (or Dead Time)
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= 50

= 28

 Live Time = 28/50 = 56 %
 Dead Time = 22/50 = 44 %

Clock

Busy

Live_Clock

• “System Busy” comes from:
 ADC data readout
 data transfer to computer
 data recording to computer
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Integrated Circuits (ASICs)
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Conventional ways to process detected signals …

e- e-

e-

e- e- e-
e- e- e-

charge-sensitive 
preamplifier

.

.

.

linear amplifier
(shaping amp)

constant fraction 
discriminator

Q

Q

V

Analog Digital 
Converter

V

timing
(trigger)

Using Integrated Circuits …

General Electronics for TPCs
(GET)
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Integrated Circuits (ASICs)
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• Large number of channels from the detector setup:
 Conventional Electronics: space and cost problems, complicated setup, easy signal tracing.
 ASIC Electronics: low cost (~1/10) and small space (~1/5), simple setup.

• HINP (Heavy Ion Nuclear Physics) Chip: 16 channels per chip, 512 channels per motherboard 
• GET (Generic Electronics for TPC): 64 channels per chip, 256 channels per AsAd board

A picture for HINP16C chip and motherboard
G.L. Engel, CAARI Conference (2010)

A picture for μTCA crate and AsAd board (4 AGET chips)
G. Rogechev, Gas Detections Systems Workshop (2018)
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Signal Processing Diagram
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• From the preamp signal to DAQ readout
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Signal Processing with HINP ASICs
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• For processing signals from 1000 channels, 

Signal processing diagram using HINP ASICs device



Sunghoon(Tony) Ahn
EBSS 2019

Signal Processing with GET ASICs
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• For processing signals from 1000 channels, 

Signal processing diagram using GET electronics
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Signal Processing with GET electronics
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Or, this way …

Photos of GET Data Acquisition Hardware
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Too Many Setting Parameters
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However, …

Photos of GET Data Acquisition Hardware
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Difficult Troubleshooting
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However, …

Sample waveforms spectrum of GET electronics
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Digital Signal Processing
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• Single Channel Signal Processing (Self Trigger)  almost no dead-time!!

• Recording amplitude and timing (100MHz/250 MHz/a few GHz Sampling rate)
• Correlation in time can be done later.
• We can record the waveform (trace) of the preamp signals for better pulse 
shape analysis.

Sample preamp output signals
S.D. Pain, EBSS2016

Vx
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Digital Signal Processing
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• Single Channel Signal Processing (Self Trigger)  almost no dead-time!!

• Recording amplitude and timestamp using Trapezoidal filter (100MHz/250 
MHz/a few GHz Sampling rate)
• Correlation in time can be done later.
• We can record the waveform (trace) of the preamp signals for better pulse 
shape analysis.
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Digital Signal Processing
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• Single Channel Signal Processing (Self Trigger)  almost no dead-time!!

• Recording amplitude and timing (100MHz/250 MHz/a few GHz Sampling rate)
• Correlation in time can be done later.
• We can record the waveform (trace) of the preamp signals for better pulse 
shape analysis. (~ μsec)
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Digital Signal Processing
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e- e-

e-

e- e- e-
e- e- e-

charge-sensitive 
preamplifier

.

.

.

Q

Q

V

XIA Pixie-16 
(16 channel)
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Digital Signal Processing
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e- e-

e-

e- e- e-
e- e- e-

charge-sensitive 
preamplifier

.

.

.

Q

Q

V

In reality…

160 channels total
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Online Data Acquisition
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• Digitized Data Transfer:

• Communication Diagram:

• Slow Control for parameter settings

• Fast Control for Start/Stop taking data

 Don’t worry! This is done by C/S Engineers! Field Programmable Gate 

Array (FPGA) programming (so called firmware).

Signal Processing 
in Electronis

Analog Signals 
from Detector

Data Disk in 
Computer

Interface Module
- FPGA
- CPU_on_Board

ADC
TDC
QDC

SCALER
….

Data Disk in 
Computer

ASICs
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DAQ Graphic User Interface
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ORNL DAQ
NSCL DAQ

GANIL DAQ
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Data Storage and Analysis System
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• Each hit channel contains 2 KB.
 For 100 evts/s wt 100 channels per evt, total data rate = 2*100*100 = 20MB/s or 

70GB/hr.

• High data rate causes problems:
System dead time increased.
Long conversion time from raw format to ROOT tree

• 112 CPUs and 116GB Memory
• Apache Spark: cluster-computing framework
• Apache Hadoop: software utilities for cluster-computing
• Docker: operating-system-level virtualization

E.C. Pollacco et al., NIM A 2018

Live Time and Data Rate of GET
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Experimental Techniques
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Beams
Where is it
available? Targets

How to make it?
Thickness? Detectors

Which one
do we need? Electronics/DAQ

What information
do we care?

Sensitivity 
Study

Theoretical 
Study

Best 
Technique
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RIB beam productions
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Beam production and delivery at CARIBU, 
Argonne National Laboratory

Projected beam rate by future FRIB
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Challenges on Reaction in Inverse Kinematics
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Simulations of Normal kinematics vs. Inverse kinematics

on 132Sn(d,p)133Sn

ⓒS.D. Pain

Neutron Spectrum of Normal kinematics vs. Inverse 

kinematics on 75Ga(α,n)78As
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Challenges on Reaction in Inverse Kinematics
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Simulations of Normal kinematics vs. Inverse kinematics

on 132Sn(d,p)133Sn

ⓒS.D. Pain

Simulations of Normal kinematics vs. Inverse kinematics

on 75Ga(α,n)78As

• Requirements:
- High Solid Angular Coverage
- Good energy and angular resolution
- Large dynamic range
- Pure target

• Requirements:
- High Efficiency
- Flat Efficiency over Neutron Energy
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To-Do List
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•Vacuum parts

•Targets

•Detector parts

•Electronics and DAQ

Collecting Parts

•Alignment

•Vacuum Test

•Target Test

•Detector Test

•Electronics Test

Device Tests
•Energy Calibration

•Detector Efficiency

•Geometry Efficiency

•Target Thickness

•System Synchronization

Calibrations

•Check Beam Condition

•Diagnostics code

•Analysis code

•Calibration params

•Make Shift Instruction

Online Analysis 
Preparation

•Beam profile check

•Contaminations

Beam 
Diagnostics

•Taking shifts

•Check coincidence

•Check data integrity

•Online Analysis

Production 
Mode •Calibrations

•Measurement of setup

•Electronics Cables log

•Break-down

Experiment 
End
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Checklist for Data Analysis
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• 1D and 2D hit patterns over channels are useful for system diagnostics.

• Beam normalization and Particle Identification (PID) plot

• Don’t forget to measure length and distance!

• Do energy and solid angle calibration!

• Correlation is important! (among detected particles/gammas)

• Check Data Rate and System Live Time and your disk space!

• Do you have theoretical calculations to compare with data online?

• Error Analysis:

• Resolution (FWHM)

• Statistical error

• Systematic error

• Theoretical error 2D Hit Pattern of ADC amplitude vs electronics channels
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84Se(d,p) Neutron Transfer Reaction Experiment
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84Se(d,p) Neutron Transfer Reaction Experiment
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84Se(d,p) Experiment Set-up

ORNL Rutgers University Barrel Array (ORRUBA)

Targets

Conventional Electronics Set-up
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84Se(d,p) Experiment Histograms

Raw Light particle Energy vs angle

Light particle Energy vs angle gated 
on S800 events

1D correlated Energy spectrum
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Experiments in ReA3/NSCL
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beam

JENSA Setup for 34Ar(α,p) Reaction
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72

• JENSA gas jet target: Chemically pure, highly localized He target with high density and low 
energy straggling.

JENSA: Jet Experiments in Nuclear Structure and Astrophysics

Conceptual Design of the gas jet
K. Schmidt, NPA8 2017
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Photos of the gas jet system

K. Schmidt, NPA8 2017

JENSA: Jet Experiments in Nuclear Structure and Astrophysics
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• Beam: 34Ar Fragmentation → Gas Stopping →ReA3 (Ecom = 5.822 and 6.13 MeV/u)
• Beam intensity: 3,000 ions/s
• Target: 6x1018 atom/cm2

Photos of 34Ar(α,p) experiment setup

D. Bardayan et al. NIMA

JENSA Setup for 34Ar(α,p) Reaction
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JENSA Setup for 34Ar(α,p) Reaction

dE vs E of silicon detectors (left) and energy vs angle gate 
by the protons in the left plot (right)

K. Schmidt, NPA8 2017

PID of Ionization Counter

Extrapolation of measurements
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Experimental Setup for 75Ga(α,xn) Reaction
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beam stopping

EBIT charge breeder

LINAC

Experimental 

stations

Experimental Setup Design

75Ga beam

3 ~ 4 MeV/u

HABANERO

PSIC

reactions occurred
in He gas cell target

• 75Ga reaccelerated beams by ReA3, NSCL, bombard 4He gas target (T=355ug/cm2) in 
the middle of the HABANERO.
• Position Sensitive Ionization Chamber (PSIC) provides beam current and PID.

n

78As

n
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He gas cell target

Projection of the He gas cell target design

• 2um thickness Ti window foil 

• large gas volume

77

He gas in/out

beam vacuumvacuum

HabaNERO

Ti window
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beam stopping

EBIT charge breeder

LINAC

Experimental 

stations

Experimental Setup Photo

75Ga beam

3 ~ 4 MeV/u

HABANERO

PSIC

reactions occurred
in He gas cell target

• RIB (75Ga26+) beam of five energies (4.0, 3.79, 3.58, 3.14 and 2.91 MeV/u)
• Beam intensity: 6,000 ions/s
• Purity: 75Ga = 95%

n

78As

Experimental Setup for 75Ga(α,xn) Reaction

PID plot in the PSIC
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Data Analysis of 75Ga(α,xn) Reaction Study
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A picture for TexAT and GET setup
G. Rogechev, Gas Detections Systems Workshop (2018)

TexAT Active Target Experiments at Texas A&M
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TexAT Active Target

Readout 
Pad

Sample Track

Field-cage

Readout 
pad design
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TexAT Active Target
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• Reaction: 8B + p with 7.5 MeV/u 8B beam 
and 103 pps from MARS
• Target: Methane at 500 Torr

- Structure of 9C -

J. Hooker et al., PRC submitted

- Looking for “Y”s -
• Reaction: 12N  12C*  8Be + α  α+α+α

• TexAT for measuring decay α particles
• CO2 gas stops 12N beams in the chamber.

TexAT Active Target Experiments at Texas A&M
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Summary

84

 Properties of nuclei we want to know: Nuclear Mass, Excitation energy and Spin 
and parity, Reaction Cross Sections, Half life of nuclear decay, Excitation function 
and level densities
 Experimental measurements are necessary to reduce the uncertainties.

 How to study the properties

 How to detect particles
- Semiconductor (Silicon and Germanium)
- Gaseous detectors
- Scintillators
- Neutron Detectors
- Micro Channel Plate (Beam Tracker)

 Signal Processing: Conventional, ASICs and Digital (Advantages and Disadvantages!)
 Data Acquisition System
 Some examples of experiments focused on techniques 
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Goals of This Lecture
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This is the end of my lecture. Can you answer 
below questions?
- How detectors actually work.
- Which parameters are actually measured, and which 

are inferred or calculated?
- How to process signals from detectors.
- Advantage of multi-channel signal processing.
 If so, You are a Detectors and Electronics Expert!!
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The End.

Good luck with your journey of the Nuclear 
Physics Studies!

EBSS 2019 – Experimental Techniques

86


